Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
Nat Commun ; 15(1): 7140, 2024 Aug 20.
Article in English | MEDLINE | ID: mdl-39164320

ABSTRACT

C-C coupling is of utmost importance in the electrocatalytic reduction of CO2, as it governs the selectivity of diverse product formation. Nevertheless, the difficulties to directly observe C-C coupling pathways at a specific nanocavity hinder the advances in catalysts and electrolyzer design for efficient high-value hydrocarbon production. Here we develop a nano-confined Raman technology to elucidate the influence of the local electric field on the evolution of C-C coupling intermediates. Through precise adjustments to the Debye length in nanocavities of a copper catalyst, the overlapping of electrical double layers drives a transition in the C-C coupling pathway at a specific nanocavity from *CHO-*CO coupling to the direct dimerization of *CO species. Experimental evidence and simulations validate that a reduced potential drop across the compact layer promotes a higher yield of CO and promotes the direct dimerization of *CO species. Our findings provide insights for the development of highly selective catalyst materials tailored to promote specific products.

2.
JACS Au ; 4(3): 1155-1165, 2024 Mar 25.
Article in English | MEDLINE | ID: mdl-38559721

ABSTRACT

Mechanical signals in animal tissues are complex and rapidly changed, and how the force transduction emerges from the single-cell adhesion bonds remains unclear. DNA-based molecular tension sensors (MTS), albeit successful in cellular force probing, were restricted by their detection range and temporal resolution. Here, we introduced a plasmonic tension nanosensor (PTNS) to make straight progress toward these shortcomings. Contrary to the fluorescence-based MTS that only has specific force response thresholds, PTNS enabled the continuous and reversible force measurement from 1.1 to 48 pN with millisecond temporal resolution. We used the PTNS to visualize the high dynamic range single-molecule force transitions at cell-matrix adhesions during adhesion formation and migration. Time-resolved force traces revealed that the lifetime and duration of stepwise force transitions of molecular clutches are strongly modulated by the traction force through filamentous actin. The force probing technique is sensitive, fast, and robust and constitutes a potential tool for single-molecule and single-cell biophysics.

3.
Nano Lett ; 23(10): 4201-4208, 2023 05 24.
Article in English | MEDLINE | ID: mdl-37188354

ABSTRACT

Understanding of DNA-mediated charge transport (CT) is significant for exploring circuits at the molecular scale. However, the fabrication of robust DNA wires remains challenging due to the persistence length and natural flexibility of DNA molecules. Moreover, CT regulation in DNA wires often relies on predesigned sequences, which limit their application and scalability. Here, we addressed these issues by preparing self-assembled DNA nanowires with lengths of 30-120 nm using structural DNA nanotechnology. We employed these nanowires to plug individual gold nanoparticles into a circuit and measured the transport current in nanowires with an optical imaging technique. Contrary to the reported cases with shallow or no length dependence, a fair current attenuation was observed with increasing nanowire length, which experimentally confirmed the prediction of the incoherent hopping model. We also reported a mechanism for the reversible CT regulation in DNA nanowires, which involves dynamic transitions in the steric conformation.


Subject(s)
Metal Nanoparticles , Nanowires , Nanowires/chemistry , Gold/chemistry , Nanotechnology/methods , DNA/chemistry
4.
ACS Nano ; 16(12): 20842-20850, 2022 12 27.
Article in English | MEDLINE | ID: mdl-36475619

ABSTRACT

Probing of the single-cell level extracellular electron transfer highlights the maximum output current for microbial fuel cells (MFCs) at hundreds of femtoampere per cell, which is difficult to achieve by existing devices. Past studies focus on the external factors for boosting charge-extraction efficiency from bacteria. Here, we elucidate the intracellular factors that determine this output limit by monitoring the respiratory-driven shrinking kinetics of a single magnetite nanoprobe immobilized on a single Shewanella oneidensis MR-1 cell with plasmonic imaging. Quantified dissolving of nanoprobes unveils a previously undescribed bio-current fluctuation between 0 and 2.7 fA on a ∼40 min cycle. Simultaneously tracing of endogenous oscillations indicates that the bio-current waves are correlated with the periodic cellular electrokinesis. The unsynchronized electron transfer capability in the cell population results in the mean current of 0.24 fA per cell, significantly smaller than in single cells. It explains why the averaged output current of MFCs cannot reach the measured single-cell currents. This work offers a different perspective to improve the power output by extending the active episodes of the bio-current waves.


Subject(s)
Bioelectric Energy Sources , Ferrosoferric Oxide , Electron Transport , Electrodes
5.
World J Clin Cases ; 10(36): 13388-13395, 2022 Dec 26.
Article in English | MEDLINE | ID: mdl-36683616

ABSTRACT

BACKGROUND: Hip revision surgery is the final treatment option for the failure of artificial hip joints, but it is more difficult than the initial operation. For patients with hip joint loosening around the prosthesis combined with large inflammatory pseudotumours and large segment bone defects, hip revision is even more difficult, and clinical reports are rare. CASE SUMMARY: Male, 59 years old. The patient underwent left hip replacement 35 years ago and was now admitted to hospital due to massive masses in the left thigh, shortening of the left lower extremity, and pain and lameness of the left hip joint. X-ray, computed tomography and magnetic resonance imaging revealed prosthesis loosening, left acetabular bone defect (Parprosky IIIB type), and a bone defect of the left proximal femur (Parprosky IIIA type). Inflammatory pseudotumours were seen in the left hip and left thigh. Hip revision surgery was performed using a 3D-printed custom acetabular prosthesis was used for hip revision surgery, which was produced by Arcam Electron Beam Melting system with Electron Beam Melting technology. The operation was successful, and the patient was followed up regularly after the operation. The custom-made acetabular prosthesis was well matched, the inflammatory pseudotumour was completely removed, the postoperative hip prosthesis was stable, and the old greater trochanter fracture was well reduced and fixed. The patient was partially weight-bearing with crutches 3 mo after the operation and walked with full weight-bearing after 6 mo. The hip prosthesis was stable, and there was no recurrence of inflammatory pseudotumours at the last follow-up. The Visual Analogue Scale was 3, and the Harris hip score was 90. CONCLUSION: The use of 3D-printed personalized custom prostheses for complex hip revision surgery has satisfactory surgical results and has great clinical application value.

6.
Proc Natl Acad Sci U S A ; 118(23)2021 06 08.
Article in English | MEDLINE | ID: mdl-34074791

ABSTRACT

The precise measurement of thermodynamic and kinetic properties for biomolecules provides the detailed information for a multitude of applications in biochemistry, biosensing, and health care. However, sensitivity in characterizing the thermodynamic binding affinity down to a single molecule, such as the Gibbs free energy ([Formula: see text]), enthalpy ([Formula: see text]), and entropy ([Formula: see text]), has not materialized. Here, we develop a nanoparticle-based technique to probe the energetic contributions of single-molecule binding events, which introduces a focused laser of optical tweezer to an optical path of plasmonic imaging to accumulate and monitor the transient local heating. This single-molecule calorimeter uncovers the complex nature of molecular interactions and binding characterizations, which can be employed to identify the thermodynamic equilibrium state and determine the energetic components and complete thermodynamic profile of the free energy landscape. This sensing platform promises a breakthrough in measuring thermal effect at the single-molecule level and provides a thorough description of biomolecular specific interactions.


Subject(s)
Antibodies/chemistry , Models, Chemical , Nanoparticles/chemistry , Calorimetry , Optical Tweezers , Thermodynamics
7.
J Am Chem Soc ; 141(40): 16071-16078, 2019 10 09.
Article in English | MEDLINE | ID: mdl-31525042

ABSTRACT

Measuring binding between molecules is critical for understanding basic biochemical processes, developing molecular diagnosis, and screening drugs. Here we study molecular binding at the single molecule level by attaching nanoparticles to the molecular binding pairs. We track the thermal fluctuations of the individual nanoparticles with sub-nanometer precision using a plasmonic scattering imaging technique and show that the fluctuations are controlled by the molecular binding pairs rather than by the nanoparticles. Analysis of the thermal fluctuations provides unique information on molecular binding, including binding energy profile, effective spring constant, and switching between single and multiple molecular binding events. The method provides new insights into molecular binding and also allows one to differentiate nonspecific binding from specific binding, which has been a difficult task in biosensors.


Subject(s)
Antibodies, Immobilized/chemistry , Gold/chemistry , Immunoglobulin G/chemistry , Metal Nanoparticles/chemistry , Nanotechnology/methods , Biophysical Phenomena , Biosensing Techniques , Entropy , Models, Chemical , Serum Albumin, Bovine/chemistry , Surface Plasmon Resonance , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL