Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 17 de 17
Filter
Add more filters










Publication year range
1.
BMC Genomics ; 25(1): 500, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773374

ABSTRACT

BACKGROUND: The ricefield eel Monopterus albus undergoes a natural sex change from female to male during its life cycle, and previous studies have shown the potential mechanisms of this transition at the transcriptional and protein levels. However, the changes in protein levels have not been fully explored, especially in the intersexual stage. RESULTS: In the present study, the protein expression patterns in the gonadal tissues from five different periods, the ovary (OV), early intersexual stage gonad (IE), middle intersexual stage gonad (IM), late intersexual stage gonad (IL), and testis (TE), were determined by untargeted proteomics sequencing. A total of 5125 proteins and 394 differentially expressed proteins (DEPs) were detected in the gonadal tissues. Of the 394 DEPs, there were 136 between the OV and IE groups, 20 between the IM and IE groups, 179 between the IL and IM groups, and 59 between the TE and IL groups. Three candidate proteins, insulin-like growth factor 2 mRNA-binding protein 3 isoform X1 (Igf2bp3), triosephosphate isomerase (Tpi), and Cu-Zn superoxide dismutase isoform X1 [(Cu-Zn) Sod1], were validated by western blotting to verify the reliability of the data. Furthermore, metal metabolite-related proteins were enriched in the IL vs. IM groups and TE vs. IL groups, which had close relationships with sex change, including Cu2+-, Ca2+-, Zn2+- and Fe2+/Fe3+-related proteins. Analysis of the combined transcriptome data revealed consistent protein/mRNA expression trends for two metal metabolite-related proteins/genes [LOC109953912 and calcium Binding Protein 39 Like (cab39l)]. Notably, we detected significantly higher levels of Cu2+ during the sex change process, suggesting that Cu2+ is a male-related metal metabolite that may have an important function in male reproductive development. CONCLUSIONS: In summary, we analyzed the protein profiles of ricefield eel gonadal tissues in five sexual stages (OV, IE, IM, IL, and TE) and verified the plausibility of the data. After preforming the functional enrichment of metal metabolite-related DEPs, we detected the contents of the metal metabolites Zn2+, Cu2+, Ca2+, and Fe2+/Fe3+ at these five stages and screened for (Cu-Zn) Sod1 and Mmp-9 as possible key proteins in the sex reversal process.


Subject(s)
Metals , Animals , Male , Female , Metals/metabolism , Eels/metabolism , Eels/genetics , Proteomics , Fish Proteins/metabolism , Fish Proteins/genetics , Smegmamorpha/metabolism , Smegmamorpha/genetics , Hermaphroditic Organisms/metabolism , Hermaphroditic Organisms/genetics , Gene Expression Profiling , Testis/metabolism
2.
BMC Genomics ; 25(1): 145, 2024 Feb 06.
Article in English | MEDLINE | ID: mdl-38321406

ABSTRACT

BACKGROUND: Schizothorax o'connori is an endemic fish distributed in the upper and lower reaches of the Yarlung Zangbo River in China. It has experienced a fourth round of whole gene replication events and is a good model for exploring the genetic differentiation and environmental adaptability of fish in the Qinghai-Tibet Plateau. The uplift of the Qinghai-Tibet Plateau has led to changes in the river system, thereby affecting gene exchange and population differentiation between fish populations. With the release of fish whole genome data, whole genome resequencing has been widely used in genetic evolutionary analysis and screening of selected genes in fish, which can better elucidate the genetic basis and molecular environmental adaptation mechanisms of fish. Therefore, our purpose of this study was to understand the population structure and adaptive characteristics of S. o'connori using the whole-genome resequencing method. RESULTS: The results showed that 23,602,746 SNPs were identified from seven populations, mostly distributed on chromosomes 2 and 23. There was no significant genetic differentiation between the populations, and the genetic diversity was relatively low. However, the Zangga population could be separated from the Bomi, Linzhi, and Milin populations in the cluster analysis. Based on historical dynamics analysis of the population, the size of the ancestral population of S. o'connori was affected by the late accelerated uplift of the Qinghai Tibet Plateau and the Fourth Glacial Age. The selected sites were mostly enriched in pathways related to DNA repair and energy metabolism. CONCLUSION: Overall, the whole-genome resequencing analysis provides valuable insights into the population structure and adaptive characteristics of S. o'connori. There was no obvious genetic differentiation at the genome level between the S. o'connori populations upstream and downstream of the Yarlung Zangbo River. The current distribution pattern and genetic diversity are influenced by the late accelerated uplift of the Qinghai Tibet Plateau and the Fourth Ice Age. The selected sites of S. o'connori are enriched in the energy metabolism and DNA repair pathways to adapt to the low temperature and strong ultraviolet radiation environment at high altitude.


Subject(s)
Cyprinidae , Ultraviolet Rays , Animals , Tibet , China , Cyprinidae/genetics , Sequence Analysis, DNA
3.
Int J Mol Sci ; 24(18)2023 Sep 05.
Article in English | MEDLINE | ID: mdl-37762014

ABSTRACT

Forkhead box H1 (FoxH1) is a sexually dimorphic gene in Oreochromis niloticus, Oplegnathus fasciatus, and Acanthopagrus latus, indicating that it is essential for gonadal development. In the present study, the molecular characteristics and potential function of FoxH1 and the activation of the cyp19a1a promoter in vitro were evaluated in Monopterus albus. The levels of foxh1 in the ovaries were three times higher than those in the testes and were regulated by gonadotropins (Follicle-Stimulating Hormone and Human Chorionic Gonadotropin). FoxH1 colocalized with Cyp19a1a in the oocytes and granulosa cells of middle and late vitellogenic follicles. In addition, three FoxH1 binding sites were identified in the proximal promoter of cyp19a1a, namely, FH1 (-871/-860), FH2 (-535/-524), and FH3 (-218/-207). FoxH1 overexpression significantly attenuated the activity of the cyp19a1a promoter in CHO cells, and FH1/2 mutation increased promoter activity. Taken together, these results suggest that FoxH1 may act as an important regulator in the ovarian development of M. albus by repressing cyp19a1a promoter activity, which provides a foundation for the study of FoxH1 function in bony fish reproductive processes.


Subject(s)
Aromatase , Forkhead Transcription Factors , Smegmamorpha , Animals , Cricetinae , Female , Binding Sites , Cricetulus , Eels/genetics , Ovary , Smegmamorpha/genetics , Forkhead Transcription Factors/genetics , Aromatase/genetics , Promoter Regions, Genetic
4.
Animals (Basel) ; 13(13)2023 Jul 05.
Article in English | MEDLINE | ID: mdl-37444008

ABSTRACT

To explore the differences in the growth characteristics and population dynamics of Schizothorax wangchiachii populations in the Jinsha River (JSR) and the Yalong River (YLR), samples were collected in the upper reaches of the JSR (n = 230) from 2019 to 2020 and the middle reaches of the YLR (n = 187) from 2017 to 2018. In the JSR and YLR populations, the age range was 11 and 12 years old, respectively, and the best growth equation was the Von Bertalanffy equation. The comparative analysis of the two populations showed that the growth coefficient, initial sexual maturity age and age at first capture of the YLR population were greater than those of the JSR population. Comparing the mortality rates of the two groups, we found that the YLR population had the higher female mortality rate (0.658 years-1) and the lower male mortality rate (0.453 years-1). Our assessment of the three natural mortality rates showed that the Fcur of both male and female populations was greater than F25%, indicating that both populations were in an overexploited state. Therefore, we suggest considering the two groups as separate protection units and implementing management measures such as ecological regulation, restoration of tributary habitat and strengthening of fishing ban monitoring to protect their resources.

5.
Molecules ; 28(4)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36838708

ABSTRACT

Lipopolysaccharide (LPS) has been considered the primary agent to establish animal models of inflammation, immunological stress, and organ injury. Previous studies have demonstrated that LPS impaired gastrointestinal development and disrupted intestinal microbial composition and metabolism. Ferulic acid (FA) isolated from multiple plants exhibits multiple biological activities. This study investigated whether FA ameliorated intestinal function and microflora in LPS-challenged Tianfu broilers. The results showed that LPS challenge impaired intestinal function, as evidenced by decreased antioxidant functions (p < 0.05), disrupted morphological structure (p < 0.05), and increased intestinal permeability (p < 0.05); however, these adverse effects were improved by FA supplementation. Additionally, FA supplementation preserved sIgA levels (p < 0.05), increased mRNA expression levels of CLDN and ZO-1 (p < 0.05), and enhanced epithelial proliferation (p < 0.05) in the ileal mucosa in LPS-challenged chickens. Moreover, FA supplementation rectified the ileal microflora disturbances in the LPS-challenged broilers. The results demonstrate that dietary FA supplementation decreased LPS-induced intestinal damage by enhancing antioxidant capacity and maintaining intestinal integrity. Furthermore, FA supplementation protects intestinal tight junctions (TJs), elevates secretory immunoglobulin A (sIgA) levels, and modulates ileal microflora composition in LPS-challenged broilers.


Subject(s)
Lipopolysaccharides , Microbiota , Animals , Lipopolysaccharides/pharmacology , Chickens/metabolism , Antioxidants/metabolism , Dietary Supplements/analysis , Diet/veterinary , Immunoglobulin A, Secretory , Animal Feed/analysis
6.
Mini Rev Med Chem ; 23(6): 652-661, 2023.
Article in English | MEDLINE | ID: mdl-36424786

ABSTRACT

BACKGROUND: Immune-related cutaneous diseases are a series of disorders, such as alopecia areata, psoriasis, atopic dermatitis, systemic lupus erythematosus and autoimmune bullous dermatoses. Vitamin D is a fat-soluble vitamin, which is known for its classical pleiotropic effect. Recent studies have found that vitamin D, after catalyzed into its biologically active form [1,25(OH) 2D], correlated with its receptor, vitamin D receptor, plays a vital role in multiple pathophysiological processes, including immune-related dermatoses. This review mainly summarizes evidence on the role of vitamin D/vitamin D receptor in immune-related cutaneous diseases and the potential therapeutic targets for skin disorders. METHODS: We have carried out a comprehensive literature search in PubMed and Google Scholar databases using keywords like "vitamin D", "vitamin D receptor", "immune", "psoriasis", "atopic dermatitis", "skin", "systemic lupus erythematosus", "alopecia areata" and "autoimmune bullous dermatoses". Only articles related to the topic were included in this review. Conference, patent, graduation thesis and articles without available full text were excluded. RESULTS: Vitamin D/vitamin D receptor is critical for skin in regulating the proliferation and differentiation of keratinocytes, keeping the integrity of the skin barrier as well as maintaining the homeostasis of the "skin's immune system". Vitamin D deficiency/vitamin D receptor mutations are potential risk factors for some immune-related cutaneous diseases. CONCLUSION: Vitamin D is a pleiotropic hormone, which is important in the homeostasis of human body. Many studies have revealed vitamin D deficiency in several skin diseases. Thus, vitamin D supplementation may be a useful therapeutic option for immune-related skin diseases.


Subject(s)
Autoimmune Diseases , Dermatitis , Skin Diseases, Vesiculobullous , Skin Diseases , Vitamin D Deficiency , Humans , Skin Diseases/drug therapy , Vitamin D/metabolism , Autoimmune Diseases/drug therapy , Vitamins/therapeutic use , Vitamin D Deficiency/drug therapy , Skin Diseases, Vesiculobullous/drug therapy , Alopecia/drug therapy , Signal Transduction , Dermatitis/drug therapy , Receptors, Calcitriol
7.
Int Arch Allergy Immunol ; 184(1): 43-53, 2023.
Article in English | MEDLINE | ID: mdl-36279853

ABSTRACT

INTRODUCTION: The effect of the COVID-19 pandemic on allergic diseases is not certain, as people's living habits and the environment have been affected by the pandemic. The present study described the influence of the COVID-19 pandemic on the allergen sensitization rate in patients with allergic diseases in central China. The results provide reliable epidemiological data for the prevention and control of allergic diseases during the COVID-19 epidemic. METHODS: Data were collected from a total of 6,915 patients with symptoms of allergic diseases who visited the Third Xiangya Hospital of Central South University in China for allergen testing from January 1, 2018, to December 31, 2021. Patients were divided into a children group (<14 years old), youth group (15∼44 years old), middle-aged group (45∼59 years old), and elderly group (>60 years old). Immunoblotting was used to detect 20 serum allergen-specific IgE (sIgE) antibodies in patient serum samples. We compared the positive rates of various allergens in different age and sex groups before and during the COVID-19 epidemic, and the prevalence data of sIgE sensitization were analysed. RESULTS: Among the 6,915 patients with symptoms of allergic diseases, 2,838 (41.04%) patients were positive for at least one of the allergens. The top three positive rates of inhaled allergens were Dermatophagoides farinae (1,764 cases, 25.51%), Dermatophagoides pteronyssinus (1,616 cases, 23.37%), and house dust (645 cases, 9.33%). The top three positive rates of food allergens were eggs (686 cases, 9.92%), milk (509 cases, 7.36%), and crabs (192 cases, 2.78%). The total positive rate of allergens was higher in men (46.99%) than in women (37.30%). Compared to 2 years before the COVID-19 epidemic, the rate of sensitization to indoor inhalant allergens increased, but outdoor inhalant allergens showed no significant change. The positive rates of milk and eggs peaked during the outbreak of COVID-19 (2020) then declined in 2021. The total positive rate of allergens was higher in males than females before and during the COVID-19 epidemic, but more allergens were different between males and females during the pandemic. Compared to middle-aged and older adults, the children and youth groups were more susceptible to allergic diseases, and they exhibited an increasing positive rate for most common allergens, especially indoor inhalant allergens, during the COVID-19 epidemic than before the pandemic. CONCLUSION: D. pteronyssinus and D. farinae are the most common allergens in South China. Under the background of normalization of epidemic prevention, indoor inhaled allergens should be first in the prevention and control of allergic diseases, and a combination of various indoor cleaning measures should be used to improve the efficiency of interventions.


Subject(s)
COVID-19 , Hypersensitivity , Male , Child , Aged , Adolescent , Middle Aged , Humans , Female , Adult , Allergens , Pandemics , Prevalence , COVID-19/epidemiology
8.
Animals (Basel) ; 12(23)2022 Dec 04.
Article in English | MEDLINE | ID: mdl-36496933

ABSTRACT

To understand the characteristics of the fish community structure and biomass particle-size spectrum in the upper reaches of the Jinsha River, fish and environmental surveys were conducted in 21 segments of the upper reaches of the Jinsha River in September 2019 and June 2020. A total of 4062 fish belonging to 2 orders, 5 families, 18 genera, and 28 species were collected. Among them, Cyprinidae fish were the most abundant (14 species), accounting for 50.00%. The Shannon index and Pielou evenness index values varied from 0.402-1.770 and 0.254-0.680, respectively. The dominant species of fish were Triplophysa stenura, Schizothorax wangchiachii, and Schizopygopsis malacanthus. Redundancy analysis (RDA) was used to analyse the relationship between the fish community and environmental factors. Velocity, altitude, and dissolved oxygen were the main influencing factors of fish community structure differences in the upper reaches of the Jinsha River. The abundance/biomass curves showed that the fish communities in the upper reaches of the Jinsha River were moderately or severely disturbed. The standardized biomass particle-size spectrum of fish showed that the degree of disturbance of fish in tributaries was much lower than that in the main stream. Compared with the historical data, the fish community structure in the Jinsha River has changed significantly, with the number of exotic species increasing, and the individual fish showing miniaturization and younger ages. It is suggested that habitat conservation strategies be adopted in the upper tributaries of the Jinsha River to provide a reference for the restoration of fishery resources and the conservation of fish diversity in the Yangtze River.

9.
Int J Mol Sci ; 23(23)2022 Dec 05.
Article in English | MEDLINE | ID: mdl-36499673

ABSTRACT

Bmpr2 plays a central role in the regulation of reproductive development in mammals, but its role during ovarian development in fish is still unclear. To ascertain the function of bmpr2 in ovarian development in the ricefield eel, we isolated and characterized the bmpr2 cDNA sequence; the localization of Bmpr2 protein was determined by immunohistochemical staining; and the expression patterns of bmpr2 in ovarian tissue incubated with FSH and hCG in vitro were analyzed. The full-length bmpr2 cDNA was 3311 bp, with 1061 amino acids encoded. Compared to other tissues, bmpr2 was abundantly expressed in the ovary and highly expressed in the early yolk accumulation (EV) stages of the ovary. In addition, a positive signal for Bmpr2 was detected in the cytoplasm of oocytes in primary growth (PG) and EV stages. In vitro, the expression level of gdf9, the ligand of bmpr2, in the 10 ng/mL FSH treatment group was significantly higher after incubation for 4 h than after incubation for different durations. However, bmpr2 expression in the 10 ng/mL FSH treatment group at 2 h, 4 h and 10 h was significantly lower. Importantly, the expression level of bmpr2 and gdf9 in the 100 IU/mL hCG group had similar changes that were significantly decreased at 4 h and 10 h. In summary, Bmpr2 might play a pivotal role in ovarian growth in the ricefield eel, and these results provide a better understanding of the function of bmpr2 in ovarian development and the basic data for further exploration of the regulatory mechanism of gdf9 in oocyte development.


Subject(s)
Eels , Gonadotropins , Animals , Female , Eels/genetics , Eels/metabolism , Gonadotropins/metabolism , Ovary/metabolism , Oocytes , Transforming Growth Factor beta/metabolism , Mammals
10.
Int J Mol Sci ; 23(18)2022 Sep 12.
Article in English | MEDLINE | ID: mdl-36142467

ABSTRACT

Apoptosis plays a key role in the effective removal of excessive and defective germ cells, which is essential for sequential hermaphroditism and sex change in vertebrates. The ricefield eel, Monopterus albus is a protogynous hermaphroditic fish that undergoes a sequential sex change from female to male. Previous studies have demonstrated that apoptosis is involved in sex change in M. albus. However, the apoptotic signaling pathway is unclear. In the current study, we explored the underlying mechanism of apoptosis during gonadal development and focused on the role of the mitochondrial apoptosis signaling pathway in sex change in M. albus. Flow cytometry was performed to detect apoptosis in gonads at five sexual stages and ovary tissues exposed to hydrogen peroxide (H2O2) in vitro. Then the expression patterns of key genes and proteins in the mitochondrial pathway, death receptor pathway and endoplasmic reticulum (ER) pathway were examined. The results showed that the apoptosis rate was significantly increased in the early intersexual stage and then decreased with the natural sex change from female to male. Quantitative real-time PCR revealed that bax, tnfr1, and calpain were mainly expressed in the five stages. ELISA demonstrated that the relative content of cytochrome-c (cyt-c) in the mitochondrial pathway was significantly higher than that of caspase8 and caspase12, with a peak in the early intersexual stage, while the levels of caspase8 and caspase12 peaked in the late intersexual stage. Interestingly, the Pearson's coefficient between cyt-c and the apoptosis rate was 0.705, which suggests that these factors are closely related during the gonadal development of M. albus. Furthermore, the cyt-c signal was found to be increased in the intersexual stage by immunohistochemistry. After incubation with H2O2, the mRNA expression of mitochondrial pathway molecules such as bax, apaf-1, and caspase3 increased in ovary tissues. In conclusion, the present results suggest that the mitochondrial apoptotic pathway may play a more important role than the other apoptotic pathways in sex change in M. albus.


Subject(s)
Disorders of Sex Development , Eels , Animals , Apoptosis , Calpain/metabolism , Cytochromes c/metabolism , Disorders of Sex Development/metabolism , Eels/genetics , Eels/metabolism , Female , Hydrogen Peroxide/metabolism , Hydrogen Peroxide/pharmacology , Male , Oocytes/metabolism , Ovary/metabolism , RNA, Messenger/metabolism , Receptors, Tumor Necrosis Factor, Type I/metabolism , bcl-2-Associated X Protein/metabolism
11.
Exp Dermatol ; 31(7): 986-992, 2022 07.
Article in English | MEDLINE | ID: mdl-35524394

ABSTRACT

Due to a steady increase in the number of individuals suffering from alopecia, this condition has recently received increasing attention. Alopecia can be caused by various pathological, environmental or psychological factors, eventually resulting in abnormalities in hair follicle (HF) structures or HF regeneration disorders, especially dysregulated hair follicle stem cell (HFSC) behaviour. HFSC behaviour includes activation, proliferation and differentiation. Appropriate HFSC behaviour sustains a persistent hair cycle (HC). HFSC behaviour is mainly influenced by HFSC metabolism, ageing and the microenvironment. In this review, we summarize recent findings on how HFSC metabolism, ageing and the microenvironment give rise to hair growth disorders, as well as related genes and signalling pathways. Recent research on the application of stem cell-based hair tissue engineering and regenerative medicine to treat alopecia is also summarized. Determining how dysregulated HFSC behaviour underlies alopecia would be helpful in identifying potential therapeutic targets.


Subject(s)
Alopecia , Hair Follicle , Alopecia/pathology , Cell Differentiation/physiology , Hair , Hair Follicle/physiology , Humans , Stem Cells
12.
Toxins (Basel) ; 14(3)2022 03 21.
Article in English | MEDLINE | ID: mdl-35324724

ABSTRACT

Lipopolysaccharide (LPS) is an endotoxin that can cause an imbalance between the oxidation and antioxidant defense systems and then induces hepatic damages. Ferulic acid (FA) has multiple biological functions including antibacterial and antioxidant activities; however, the effect of FA on lipopolysaccharide-induced hepatic injury remains unknown. The purpose of this study was to investigate the mechanism of action of dietary Ferulic acid against Lipopolysaccharide-induced hepatic injuries in Tianfu broiler chickens. The results showed that supplementation of FA in daily feed increased body weight (BW) and decreased the feed conversion ratio (FCR) in LPS treatment broilers significantly (p < 0.05). Additionally, supplement of FA alleviated histological changes and apoptosis of hepatocytes in LPS treatment broilers. Supplement of FA significantly decreases the activities of ROS. Interestingly, the levels of antioxidant parameters including total superoxide dismutase (T-SOD), total antioxidant capacity (T-AOC), and glutathione (GSH) in LPS group were significantly increased by the FA supplementation (p < 0.05). Nevertheless, administration of LPS to broilers decreased the expressions of Nrf2, NQO1, SOD, GSH-Px, CAT and Bcl-2, whereas it increased the expressions of Bax and Caspase-3 (p < 0.05). Moreover, the expressions of Nrf2, NQO1, SOD, CAT, Bcl-2 were significantly upregulated and Caspase-3 were significantly downregulated in the FL group when compared to LPS group (p < 0.05). In conclusion, supplementation of FA in daily feed improves growth performance and alleviates LPS-induced oxidative stress, histopathologic changes, and apoptosis of hepatocytes in Tianfu broilers.


Subject(s)
Chickens , Lipopolysaccharides , Animal Feed/analysis , Animals , Antioxidants/metabolism , Antioxidants/pharmacology , Caspase 3/metabolism , Coumaric Acids , Diet/veterinary , Dietary Supplements , Glutathione/metabolism , Lipopolysaccharides/pharmacology , NF-E2-Related Factor 2/metabolism , Oxidative Stress , Proto-Oncogene Proteins c-bcl-2/metabolism , Superoxide Dismutase/metabolism
13.
Int J Behav Med ; 29(2): 152-159, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34341957

ABSTRACT

BACKGROUND: The current study evaluated the associations between history of weight discrimination and race on pre-treatment depressive symptoms, treatment session attendance, and weight loss among Black and White adults enrolled in a 16-week obesity intervention. METHODS: Participants (N = 271; mean BMI = 35.7 kg/m2; 59% Black; 92% women) reported prior experiences of weight discrimination and completed the Center for Epidemiological Studies Depression (CES-D) Scale at baseline. Weekly attendance at group sessions was recorded, and weight was measured at baseline and post-treatment. All models adjusted for baseline BMI, age, and sex. RESULTS: Participants with a history of weight discrimination scored 2.4 points higher on the CES-D (B = 2.432, p = .012) and lost 2% less weight relative to those without weight discrimination (B = 0.023, p = .002). Race modified the association between weight discrimination and treatment session attendance, such that Black individuals attended fewer sessions if they had prior experience of weight discrimination, but prior weight discrimination was not significantly associated with treatment attendance among White individuals. CONCLUSION: Weight discrimination is associated with pre-treatment depressive symptoms and may hinder weight loss regardless of race. Black individuals may attend fewer weight loss treatment sessions if they have prior experience of weight discrimination.


Subject(s)
Depressive Disorder , Obesity , Adult , Behavior Therapy , Depression/therapy , Female , Humans , Male , Obesity/therapy , Weight Loss/physiology
14.
J Dermatol ; 48(8): 1129-1138, 2021 Aug.
Article in English | MEDLINE | ID: mdl-34109676

ABSTRACT

Regulated necrosis, also termed necroptosis, is another programmed cell death depending on a unique molecular pathway that does not overlap with apoptosis. Tumor necrosis factor and Toll-like receptor family members, interferon, and other mediators are the factors that mainly cause necroptosis. Activating necroptosis by ligands of death receptors requires the kinase activity of receptor-interacting proteins 1 and 3, and a mixed lineage kinase domain-like protein, which is a critical downstream mediator of necroptosis. Increasing evidence has revealed that necroptosis does not only involve physiological regulation but also the occurrence, development, and prognosis of certain diseases, such as septicemia, neurodegenerative diseases, and ischemic-reperfusion injury. Many excellent documented systematic discussions of necroptosis and its role in various skin diseases. In this review, we summarize the molecular mechanism of necroptosis, as well as the current knowledge on the contribution of necroptosis, in infection-related, immune-mediated, autoimmune skin diseases, and malignant skin tumors.


Subject(s)
Necroptosis , Skin Diseases , Apoptosis , Humans , Necrosis , Protein Kinases
15.
Photodermatol Photoimmunol Photomed ; 37(5): 442-448, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33738849

ABSTRACT

Programmed cell death (PCD) is a basic component of life and an important terminal path for cells. A variety of biological events are associated with PCD, including the conservation of tissue homeostasis and removal of harmful cells. Overexposure of the skin to UV radiation causes skin photodamage. Keratinocytes are the first line of defence against ultraviolet radiation. During UV radiation, the keratinocyte can undergo four modes of PCD: apoptosis, pyroptosis, necroptosis and autophagy. The molecular mechanisms of these four modes of PCD have been widely studied as potential therapeutic targets for the prevention of UV-induced skin inflammation, ageing and skin cancer. In this review, we summarize the role of keratinocyte PCD in the pathogenesis of UV-induced skin photodamage. This article will provide new research directions for the design of intervention strategies for the treatment and prevention of skin photodamage.


Subject(s)
Apoptosis , Ultraviolet Rays , Autophagy , Keratinocytes , Skin , Ultraviolet Rays/adverse effects
16.
J Health Psychol ; 26(11): 2056-2061, 2021 09.
Article in English | MEDLINE | ID: mdl-31749387

ABSTRACT

Medical events that "trigger" motivation to lose weight may improve treatment outcomes compared to non-medical or no triggering events. However, previous findings include only long-term successful participants, not those initiating treatment. The current study compared those with medical triggering events or non-medical triggering events to no triggering events on attendance and weight loss during a weight management program. Medical-triggering-event participants lost 1.8 percent less weight (p = 0.03) than no-triggering-event participants. Non-medical-triggering-event participants attended 1.45 more sessions (p = 0.04) and were 1.83 times more likely to complete the program (p = 0.03) than no-triggering-event participants. These findings fail to support the benefit of medical triggering events when beginning treatment for obesity.


Subject(s)
Weight Loss , Weight Reduction Programs , Humans , Motivation , Obesity/therapy , Treatment Outcome
17.
Int J Mol Sci ; 20(13)2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31261843

ABSTRACT

The antioxidant effect of salidroside has been proven, but its role in liver injury is poorly understood. In this study, we aimed to evaluate the protective effects and mechanism of salidroside on liver injury induced by carbon tetrachloride (CCl4) in vivo. Mice were pretreated with salidroside (60 mg/kg, intraperitoneally injected, i.p.) once per day for 14 consecutive days and then administered with CCl4 (15.95 g/kg, i.p.) for 24 h to produce a liver injury model. Salidroside attenuated hepatic transaminase elevation in serum and ameliorated liver steatosis and necrosis, thereby suggesting its protective effect on the liver. Salidroside antagonized CCl4-induced toxicity by equilibrating antioxidation system, thereby inhibiting reactive oxygen species accumulation, and restoring mitochondrial structure and function. Salidroside exerts antioxidant and liver-protective effects by selectively inhibiting the activation of genes, including growth arrest and DNA -damage-inducible 45 α (Gadd45a), mitogen-activated protein kinase 7 (Mapk7), and related RAS viral oncogene homolog 2 (Rras2), which induce oxidative stress in the mitogen-activated protein kinase pathway. These results revealed that salidroside can protect the liver from CCl4-induced injury by resisting oxidative stress and protecting mitochondrial function.


Subject(s)
Antioxidants , Chemical and Drug Induced Liver Injury , Glucosides , Mitochondria, Liver , Oxidative Stress , Phenols , Animals , Male , Mice , Antioxidants/pharmacology , Antioxidants/therapeutic use , Carbon Tetrachloride/toxicity , Cell Cycle Proteins/genetics , Cell Cycle Proteins/metabolism , Chemical and Drug Induced Liver Injury/drug therapy , Chemical and Drug Induced Liver Injury/metabolism , Chemical and Drug Induced Liver Injury/prevention & control , Glucosides/pharmacology , Glucosides/therapeutic use , MAP Kinase Signaling System , Membrane Proteins/genetics , Membrane Proteins/metabolism , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Mitochondria, Liver/drug effects , Mitochondria, Liver/metabolism , Monomeric GTP-Binding Proteins/genetics , Monomeric GTP-Binding Proteins/metabolism , Phenols/pharmacology , Phenols/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...