Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 14273, 2024 06 20.
Article in English | MEDLINE | ID: mdl-38902362

ABSTRACT

Tumor-derived extracellular vesicles (EVs) show great potential as biomarkers for several diseases, including pancreatic cancer, due to their roles in cancer development and progression. However, the challenge of utilizing EVs as biomarkers lies in their inherent heterogeneity in terms of size and concentration, making accurate quantification difficult, which is highly dependent on the isolation and quantification methods used. In our study, we compared three EV isolation techniques and two EV quantification methods. We observed variations in EV concentration, with approximately 1.5-fold differences depending on the quantification method used. Interestingly, all EV isolation techniques consistently yielded similar EV quantities, overall size distribution, and modal sizes. In contrast, we found a notable increase in total EV amounts in samples from pancreatic cancer cell lines, mouse models, and patient plasma, compared to non-cancerous conditions. Moreover, individual tumor-derived EVs exhibited at least a 3-fold increase in several EV biomarkers. Our data, obtained from EVs isolated using various techniques and quantified through different methods, as well as originating from various pancreatic cancer models, suggests that EV profiling holds promise for the identification of unique and cancer-specific biomarkers in pancreatic cancer.


Subject(s)
Biomarkers, Tumor , Epithelial Cell Adhesion Molecule , Extracellular Vesicles , Glypicans , Pancreatic Neoplasms , Pancreatic Neoplasms/metabolism , Pancreatic Neoplasms/pathology , Extracellular Vesicles/metabolism , Humans , Biomarkers, Tumor/metabolism , Animals , Mice , Cell Line, Tumor , Epithelial Cell Adhesion Molecule/metabolism , Glypicans/metabolism , Integrin alphaV/metabolism
2.
ACS Appl Electron Mater ; 2(4): 913-919, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32550598

ABSTRACT

Although graphene-based biosensors provid extreme sensitivity for the detection of atoms, gases, and biomolecules, the specificity of graphene biosensors to the target molecules requires surface decoration of graphene with bifunctional linkers such pyrene derivatives. Here, we demonstrate that the pyrene functionalization influences graphene's electrical properties by yielding partial formation of bilayer graphene which was confirmed by Raman 2D spectrum. Based on this observation, we introduce quadratic fit analysis of the nonlinear electrical behavior of pyrene-functionalized graphene near the Dirac point. Compared to the conventional linear fit analysis of the transconductance at a distance from the Dirac point, the quadratic fit analysis of the nonlinear transconductance near the Dirac point increased the overall protein detection sensitivity by a factor of 5. Furthermore, we show that both pyrene linkers and gating voltage near the Dirac point play critical roles in sensitive and reliable detection of proteins' biological activities with the graphene biosensors.

SELECTION OF CITATIONS
SEARCH DETAIL