Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 1.255
Filter
1.
Phys Rev Lett ; 132(19): 196902, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38804923

ABSTRACT

We report on the mechanism of energy transfer in Van der Waals heterostructures of the two-dimensional semiconductor WS_{2} and graphene with varying interlayer distances, achieved through spacer layers of hexagonal boron nitride (h-BN). We record photoluminescence and reflection spectra at interlayer distances between 0.5 and 5.8 nm (0-16 h-BN layers). We find that the energy transfer is dominated by states outside the light cone, indicative of a Förster transfer process, with an additional contribution from a Dexter process at 0.5 nm interlayer distance. We find that the measured dependence of the luminescence intensity on interlayer distances above 1 nm can be quantitatively described using recently reported values of the Förster transfer rates of thermalized charge carriers. At smaller interlayer distances, the experimentally observed transfer rates exceed the predictions and, furthermore, depend on excess energy as well as on excitation density. Since the transfer probability of the Förster mechanism depends on the momentum of electron-hole pairs, we conclude that, at these distances, the transfer is driven by nonrelaxed charge carrier distributions.

2.
Nature ; 628(8009): 741-745, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38658686

ABSTRACT

Extensive efforts have been undertaken to combine superconductivity and the quantum Hall effect so that Cooper-pair transport between superconducting electrodes in Josephson junctions is mediated by one-dimensional edge states1-6. This interest has been motivated by prospects of finding new physics, including topologically protected quasiparticles7-9, but also extends into metrology and device applications10-13. So far it has proven challenging to achieve detectable supercurrents through quantum Hall conductors2,3,6. Here we show that domain walls in minimally twisted bilayer graphene14-18 support exceptionally robust proximity superconductivity in the quantum Hall regime, allowing Josephson junctions to operate in fields close to the upper critical field of superconducting electrodes. The critical current is found to be non-oscillatory and practically unchanging over the entire range of quantizing fields, with its value being limited by the quantum conductance of ballistic, strictly one-dimensional, electronic channels residing within the domain walls. The system described is unique in its ability to support Andreev bound states at quantizing fields and offers many interesting directions for further exploration.

3.
Phys Rev Lett ; 132(9): 096301, 2024 Mar 01.
Article in English | MEDLINE | ID: mdl-38489611

ABSTRACT

This Letter presents a nonlocal study on the electric-field-tunable edge transport in h-BN-encapsulated dual-gated Bernal-stacked (ABA) trilayer graphene across various displacement fields (D) and temperatures (T). Our measurements revealed that the nonlocal resistance (R_{NL}) surpassed the expected classical Ohmic contribution by a factor of at least 2 orders of magnitude. Through scaling analysis, we found that the nonlocal resistance scales linearly with the local resistance (R_{L}) only when the D exceeds a critical value of ∼0.2 V/nm. Additionally, we observed that the scaling exponent remains constant at unity for temperatures below the bulk-band gap energy threshold (T<25 K). Further, the value of R_{NL} decreases in a linear fashion as the channel length (L) increases. These experimental findings provide evidence for edge-mediated charge transport in ABA trilayer graphene under the influence of a finite displacement field. Furthermore, our theoretical calculations support these results by demonstrating the emergence of dispersive edge modes within the bulk-band gap energy range when a sufficient displacement field is applied.

4.
Phys Rev Lett ; 132(5): 056901, 2024 Feb 02.
Article in English | MEDLINE | ID: mdl-38364159

ABSTRACT

Laser-induced shift of atomic states due to the ac Stark effect has played a central role in cold-atom physics and facilitated their emergence as analog quantum simulators. Here, we explore this phenomenon in an atomically thin layer of semiconductor MoSe_{2}, which we embedded in a heterostructure enabling charge tunability. Shining an intense pump laser with a small detuning from the material resonances, we generate a large population of virtual collective excitations and achieve a regime where interactions with this background population are the leading contribution to the ac Stark shift. Using this technique we study how itinerant charges modify-and dramatically enhance-the interactions between optical excitations. In particular, our experiments show that the interaction between attractive polarons could be more than an order of magnitude stronger than those between bare excitons.

5.
Nanomaterials (Basel) ; 14(4)2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38392756

ABSTRACT

An asymmetric dual-grating gate bilayer graphene-based field effect transistor (ADGG-GFET) with an integrated bowtie antenna was fabricated and its response as a Terahertz (THz) detector was experimentally investigated. The device was cooled down to 4.5 K, and excited at different frequencies (0.15, 0.3 and 0.6 THz) using a THz solid-state source. The integration of the bowtie antenna allowed to obtain a substantial increase in the photocurrent response (up to 8 nA) of the device at the three studied frequencies as compared to similar transistors lacking the integrated antenna (1 nA). The photocurrent increase was observed for all the studied values of the bias voltage applied to both the top and back gates. Besides the action of the antenna that helps the coupling of THz radiation to the transistor channel, the observed enhancement by nearly one order of magnitude of the photoresponse is also related to the modulation of the hole and electron concentration profiles inside the transistor channel by the bias voltages imposed to the top and back gates. The creation of local n and p regions leads to the formation of homojuctions (np, pn or pp+) along the channel that strongly affects the overall photoresponse of the detector. Additionally, the bias of both back and top gates could induce an opening of the gap of the bilayer graphene channel that would also contribute to the photocurrent.

6.
Science ; 382(6676): 1260-1264, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38096376

ABSTRACT

Flying qubits encode quantum information in propagating modes instead of stationary discrete states. Although photonic flying qubits are available, the weak interaction between photons limits the efficiency of conditional quantum gates. Conversely, electronic flying qubits can use Coulomb interactions, but the weaker quantum coherence in conventional semiconductors has hindered their realization. In this work, we engineered on-demand injection of a single electronic flying qubit state and its manipulation over the Bloch sphere. The flying qubit is a Leviton propagating in quantum Hall edge channels of a high-mobility graphene monolayer. Although single-shot qubit readout and two-qubit operations are still needed for a viable manipulation of flying qubits, the coherent manipulation of an itinerant electronic state at the single-electron level presents a highly promising alternative to conventional qubits.

7.
Nat Commun ; 14(1): 7911, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-38036517

ABSTRACT

The coherent dynamics of a quantum mechanical two-level system passing through an anti-crossing of two energy levels can give rise to Landau-Zener-Stückelberg-Majorana (LZSM) interference. LZSM interference spectroscopy has proven to be a fruitful tool to investigate charge noise and charge decoherence in semiconductor quantum dots (QDs). Recently, bilayer graphene has developed as a promising platform to host highly tunable QDs potentially useful for hosting spin and valley qubits. So far, in this system no coherent oscillations have been observed and little is known about charge noise in this material. Here, we report coherent charge oscillations and [Formula: see text] charge decoherence times in a bilayer graphene double QD. The charge decoherence times are measured independently using LZSM interference and photon assisted tunneling. Both techniques yield [Formula: see text] average values in the range of 400-500 ps. The observation of charge coherence allows to study the origin and spectral distribution of charge noise in future experiments.

8.
Nanoscale ; 15(46): 18818-18824, 2023 Nov 30.
Article in English | MEDLINE | ID: mdl-37962416

ABSTRACT

The ability to tune the twist angle between different layers of two-dimensional (2D) materials has enabled the creation of electronic flat bands artificially, leading to exotic quantum phases. When a twisted blilayer of graphene (tBLG) is placed at the van der Waals proximity to a semiconducting layer of transition metal dichalcogenide (TMDC), such as WSe2, the emergent phases in the tBLG can fundamentally modify the functionality of such heterostructures. Here we have performed photoresponse measurements in few-layer-WSe2/tBLG heterostructure, where the mis-orientation angle of the tBLG layer was chosen to lie close to the magic angle of 1.1°. Our experiments show that the photoresponse is extremely sensitive to the band structure of tBLG and gets strongly suppressed when the Fermi energy was placed within the low-energy moiré bands. Photoresponse could however be recovered when Fermi energy exceeded the moiré band edge where it was dominated by the photogating effect due to transfer of charge between the tBLG and the WSe2 layers. Our observations suggest the possibility of the screening effects from moiré flat bands that strongly affect the charge transfer process at the WSe2/tBLG interface, which is further supported by time-resolved photo-resistance measurements.

9.
Nature ; 623(7987): 509-513, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37968525

ABSTRACT

Magnetic properties of materials ranging from conventional ferromagnetic metals to strongly correlated materials such as cuprates originate from Coulomb exchange interactions. The existence of alternate mechanisms for magnetism that could naturally facilitate electrical control has been discussed theoretically1-7, but an experimental demonstration8 in an extended system has been missing. Here we investigate MoSe2/WS2 van der Waals heterostructures in the vicinity of Mott insulator states of electrons forming a frustrated triangular lattice and observe direct evidence of magnetic correlations originating from a kinetic mechanism. By directly measuring electronic magnetization through the strength of the polarization-selective attractive polaron resonance9,10, we find that when the Mott state is electron-doped, the system exhibits ferromagnetic correlations in agreement with the Nagaoka mechanism.

10.
Nanoscale ; 15(45): 18203-18211, 2023 Nov 23.
Article in English | MEDLINE | ID: mdl-37920920

ABSTRACT

Semiconducting transition metal dichalcogenides (TMDCs) are very promising materials for quantum dots and spin-qubit implementation. Reliable operation of spin qubits requires the knowledge of the Landé g-factor, which can be measured by exploiting the discrete energy spectrum on a quantum dot. However, the quantum dots realized in TMDCs are yet to reach the required control and quality for reliable measurement of excited state spectroscopy and the g-factor, particularly in atomically thin layers. Quantum dot sizes reported in TMDCs so far are not small enough to observe discrete energy levels on them. Here, we report on electron transport through discrete energy levels of quantum dots in a single layer MoS2 isolated from its environment using a dual gate geometry. The quantum dot energy levels are separated by a few (5-6) meV such that the ground state and the first excited state transitions are clearly visible, thanks to the low contact resistance of ∼700 Ω and relatively low gate voltages. This well-resolved energy separation allowed us to accurately measure the ground state g-factor of ∼5 in MoS2 quantum dots. We observed a spin-filling sequence in our quantum dots under a perpendicular magnetic field. Such a system offers an excellent testbed to measure the key parameters for evaluation and implementation of spin-valley qubits in TMDCs, thus accelerating the development of quantum systems in two-dimensional semiconducting TMDCs.

11.
Nat Commun ; 14(1): 6471, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833246

ABSTRACT

Optoelectronics is a valuable solution to scale up wireless links frequency to sub-THz in the next generation antenna systems and networks. Here, we propose a low-power consumption, small footprint building block for 6 G and 5 G new radio wireless transmission allowing broadband capacity (e.g., 10-100 Gb/s per link and beyond). We demonstrate a wireless datalink based on graphene, reaching setup limited sub-THz carrier frequency and multi-Gbit/s data rate. Our device consists of a graphene-based integrated optoelectronic mixer capable of mixing an optically generated reference oscillator approaching 100 GHz, with a baseband electrical signal. We report >96 GHz optoelectronic bandwidth and -44 dB upconversion efficiency with a footprint significantly smaller than those of state-of-the-art photonic transmitters (i.e., <0.1 mm2). These results are enabled by an integrated-photonic technology based on wafer-scale high-mobility graphene and pave the way towards the development of optoelectronics-based arrayed-antennas for millimeter-wave technology.

12.
Science ; 382(6666): 81-87, 2023 Oct 06.
Article in English | MEDLINE | ID: mdl-37797004

ABSTRACT

For almost a century, magnetic oscillations have been a powerful "quantum ruler" for measuring Fermi surface topology. In this study, we used Landau-level spectroscopy to unravel the energy-resolved valley-contrasting orbital magnetism and large orbital magnetic susceptibility that contribute to the energies of Landau levels of twisted double-bilayer graphene. These orbital magnetism effects led to substantial deviations from the standard Onsager relation, which manifested as a breakdown in scaling of Landau-level orbits. These substantial magnetic responses emerged from the nontrivial quantum geometry of the electronic structure and the large length scale of the moiré lattice potential. Going beyond traditional measurements, Landau-level spectroscopy performed with a scanning tunneling microscope offers a complete quantum ruler that resolves the full energy dependence of orbital magnetic properties in moiré quantum matter.

13.
Phys Rev Lett ; 131(11): 116901, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37774277

ABSTRACT

We investigate the exciton fine structure in atomically thin WSe_{2}-based van der Waals heterostructures where the density of optical modes at the location of the semiconductor monolayer can be tuned. The energy splitting Δ between the bright and dark exciton is measured by photoluminescence spectroscopy. We demonstrate that Δ can be tuned by a few meV as a result of a significant Lamb shift of the optically active exciton that arises from emission and absorption of virtual photons triggered by the vacuum fluctuations of the electromagnetic field. We also measure strong variations of the bright exciton radiative linewidth as a result of the Purcell effect. All these experimental results illustrate the strong sensitivity of the excitons to local vacuum field fluctuations. We find a very good agreement with a model that demonstrates the equivalence, for our system, of a classical electrodynamical transfer matrix formalism and quantum-electrodynamical approach. The bright-dark splitting control we demonstrate here in the weak light-matter coupling regime should apply to any semiconductor structures.

14.
Opt Lett ; 48(17): 4590-4592, 2023 Sep 01.
Article in English | MEDLINE | ID: mdl-37656562

ABSTRACT

For the practical implementation of microdisk resonators as active nanophotonic devices, it is essential that they can be electrically driven. However, it is difficult to inject current in such small-scale devices without severely degrading their optical properties. We demonstrate the successful fabrication of an electrically injected microdisk based on Eu-doped GaN, in which an SiO2 spacer is used to prevent the interaction of the metal contact with the optical resonances. The microdisk shows Eu-related emission upon electrical injection and from the observed resonance peak, a cavity quality (Q)-factor of 3400 is concluded.

15.
Nat Nanotechnol ; 18(9): 1012-1019, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37524907

ABSTRACT

Excitons (coupled electron-hole pairs) in semiconductors can form collective states that sometimes exhibit spectacular nonlinear properties. Here, we show experimental evidence of a collective state of short-lived excitons in a direct-bandgap, atomically thin MoS2 semiconductor whose propagation resembles that of a classical liquid as suggested by the nearly uniform photoluminescence through the MoS2 monolayer regardless of crystallographic defects and geometric constraints. The exciton fluid flows over ultralong distances (at least 60 µm) at a speed of ~1.8 × 107 m s-1 (~6% the speed of light). The collective phase emerges above a critical laser power, in the absence of free charges and below a critical temperature (usually Tc ≈ 150 K) approaching room temperature in hexagonal-boron-nitride-encapsulated devices. Our theoretical simulations suggest that momentum is conserved and local equilibrium is achieved among excitons; both these features are compatible with a fluid dynamics description of the exciton transport.

16.
Nat Commun ; 14(1): 4055, 2023 Jul 08.
Article in English | MEDLINE | ID: mdl-37422470

ABSTRACT

Recent experiments in magic-angle twisted bilayer graphene have revealed a wealth of novel electronic phases as a result of interaction-driven spin-valley flavour polarisation. In this work, we investigate correlated phases due to the combined effect of spin-orbit coupling-enhanced valley polarisation and the large density of states below half filling of the moiré band in twisted bilayer graphene coupled to tungsten diselenide. We observe an anomalous Hall effect, accompanied by a series of Lifshitz transitions that are highly tunable with carrier density and magnetic field. The magnetisation shows an abrupt change of sign near half-filling, confirming its orbital nature. While the Hall resistance is not quantised at zero magnetic fields-indicating a ground state with partial valley polarisation-perfect quantisation and complete valley polarisation are observed at finite fields. Our results illustrate that singularities in the flat bands in the presence of spin-orbit coupling can stabilise ordered phases even at non-integer moiré band fillings.


Subject(s)
Graphite , Electronics , Environment , Excipients , Magnetic Fields
17.
Nature ; 618(7963): 51-56, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37138084

ABSTRACT

Particle-hole symmetry plays an important role in the characterization of topological phases in solid-state systems1. It is found, for example, in free-fermion systems at half filling and it is closely related to the notion of antiparticles in relativistic field theories2. In the low-energy limit, graphene is a prime example of a gapless particle-hole symmetric system described by an effective Dirac equation3,4 in which topological phases can be understood by studying ways to open a gap by preserving (or breaking) symmetries5,6. An important example is the intrinsic Kane-Mele spin-orbit gap of graphene, which leads to a lifting of the spin-valley degeneracy and renders graphene a topological insulator in a quantum spin Hall phase7 while preserving particle-hole symmetry. Here we show that bilayer graphene allows the realization of electron-hole double quantum dots that exhibit near-perfect particle-hole symmetry, in which transport occurs via the creation and annihilation of single electron-hole pairs with opposite quantum numbers. Moreover, we show that particle-hole symmetric spin and valley textures lead to a protected single-particle spin-valley blockade. The latter will allow robust spin-to-charge and valley-to-charge conversion, which are essential for the operation of spin and valley qubits.

18.
Nat Commun ; 14(1): 2396, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37100775

ABSTRACT

The coexistence of gate-tunable superconducting, magnetic and topological orders in magic-angle twisted bilayer graphene provides opportunities for the creation of hybrid Josephson junctions. Here we report the fabrication of gate-defined symmetry-broken Josephson junctions in magic-angle twisted bilayer graphene, where the weak link is gate-tuned close to the correlated insulator state with a moiré filling factor of υ = -2. We observe a phase-shifted and asymmetric Fraunhofer pattern with a pronounced magnetic hysteresis. Our theoretical calculations of the junction weak link-with valley polarization and orbital magnetization-explain most of these unconventional features. The effects persist up to the critical temperature of 3.5 K, with magnetic hysteresis observed below 800 mK. We show how the combination of magnetization and its current-induced magnetization switching allows us to realise a programmable zero-field superconducting diode. Our results represent a major advance towards the creation of future superconducting quantum electronic devices.

19.
Nat Nanotechnol ; 18(4): 343-349, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36941357

ABSTRACT

The detection of individual quanta of light is important for quantum communication, fluorescence lifetime imaging, remote sensing and more. Due to their high detection efficiency, exceptional signal-to-noise ratio and fast recovery times, superconducting-nanowire single-photon detectors (SNSPDs) have become a critical component in these applications. However, the operation of conventional SNSPDs requires costly cryocoolers. Here we report the fabrication of two types of high-temperature superconducting nanowires. We observe linear scaling of the photon count rate on the radiation power at the telecommunications wavelength of 1.5 µm and thereby reveal single-photon operation. SNSPDs made from thin flakes of Bi2Sr2CaCu2O8+δ exhibit a single-photon response up to 25 K, and for SNSPDs from La1.55Sr0.45CuO4/La2CuO4 bilayer films, this response is observed up to 8 K. While the underlying detection mechanism is not fully understood yet, our work expands the family of materials for SNSPD technology beyond the liquid helium temperature limit and suggests that even higher operation temperatures may be reached using other high-temperature superconductors.

20.
Adv Mater ; 35(17): e2209513, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36787625

ABSTRACT

Ferromagnetism in van der Waals systems, preserved down to a monolayer limit, attracted attention to a class of materials with general composition CrX3 (X=I, Br, and Cl), which are treated now as canonical 2D ferromagnets. Their diverse magnetic properties, such as different easy axes or varying and controllable character of in-plane or interlayer ferromagnetic coupling, make them promising candidates for spintronic, photonic, optoelectronic, and other applications. Still, significantly different magneto-optical properties between the three materials have been presenting a challenging puzzle for researchers over the last few years. Herewith, it is demonstrated that despite similar structural and magnetic configurations, the coupling between excitons and magnetization is qualitatively different in CrBr3 and CrI3 films. Through a combination of the optical spin pumping experiments with the state-of-the-art theory describing bound excitonic states in the presence of magnetization, we concluded that the hole-magnetization coupling has the opposite sign in CrBr3 and CrI3 and also between the ground and excited exciton state. Consequently, efficient spin pumping capabilities are demonstrated in CrBr3 driven by magnetization via spin-dependent absorption, and the different origins of the magnetic hysteresis in CrBr3 and CrI3 are unraveled.

SELECTION OF CITATIONS
SEARCH DETAIL
...