ABSTRACT
PREMISE OF THE STUDY: Clade-specific bursts in diversification are often associated with the evolution of key innovations. However, in groups with no obvious morphological innovations, observed upticks in diversification rates have also been attributed to the colonization of a new geographic environment. In this study, we explore the systematics, diversification dynamics, and historical biogeography of the plant clade Rhinantheae in the Orobanchaceae, with a special focus on the Andean clade of the genus Bartsia. METHODS: We sampled taxa from across Rhinantheae, including a representative sample of Andean Bartsia species. Using standard phylogenetic methods, we reconstructed evolutionary relationships, inferred divergence times among the clades of Rhinantheae, elucidated their biogeographic history, and investigated diversification dynamics. KEY RESULTS: We confirmed that the South American Bartsia species form a highly supported monophyletic group. The median crown age of Rhinantheae was determined to be ca. 30 Myr, and Europe played an important role in the biogeographic history of the lineages. South America was first reconstructed in the biogeographic analyses around 9 Myr ago, and with a median age of 2.59 Myr, this clade shows a significant uptick in diversification. CONCLUSIONS: Increased net diversification of the South American clade corresponds to biogeographic movement into the New World. This movement happened at a time when the Andes were reaching the necessary elevation to host an alpine environment. Although a specific route could not be identified with certainty, we provide plausible hypotheses to how the group colonized the New World.
Subject(s)
Orobanchaceae/genetics , Base Sequence , Biological Evolution , DNA, Plant/chemistry , DNA, Plant/genetics , Europe , Molecular Sequence Data , Phylogeny , Phylogeography , Sequence Alignment , Sequence Analysis, DNA , South AmericaABSTRACT
BACKGROUND: A key argument in favor of conserving biodiversity is that as yet undiscovered biodiversity will yield products of great use to humans. However, the link between undiscovered biodiversity and useful products is largely conjectural. Here we provide direct evidence from bioassays of endophytes isolated from tropical plants and bioinformatic analyses that novel biology will indeed yield novel chemistry of potential value. METHODOLOGY/PRINCIPAL FINDINGS: We isolated and cultured 135 endophytic fungi and bacteria from plants collected in Peru. nrDNAs were compared to samples deposited in GenBank to ascertain the genetic novelty of cultured specimens. Ten endophytes were found to be as much as 15-30% different than any sequence in GenBank. Phylogenetic trees, using the most similar sequences in GenBank, were constructed for each endophyte to measure phylogenetic distance. Assays were also conducted on each cultured endophyte to record bioactivity, of which 65 were found to be bioactive. CONCLUSIONS/SIGNIFICANCE: The novelty of our contribution is that we have combined bioinformatic analyses that document the diversity found in environmental samples with culturing and bioassays. These results highlight the hidden hyperdiversity of endophytic fungi and the urgent need to explore and conserve hidden microbial diversity. This study also showcases how undergraduate students can obtain data of great scientific significance.