Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLoS One ; 16(10): e0258369, 2021.
Article in English | MEDLINE | ID: mdl-34705852

ABSTRACT

The Ancestral Puebloans occupied Chaco Canyon, in what is now the southwestern USA, for more than a millennium and harvested useful timber and fuel from the trees of distant forests as well as local woodlands, especially juniper and pinyon pine. These pinyon juniper woodland products were an essential part of the resource base from Late Archaic times (3000-100 BC) to the Bonito phase (AD 800-1140) during the great florescence of Chacoan culture. During this vast expanse of time, the availability of portions of the woodland declined. We posit, based on pollen and macrobotanical remains, that the Chaco Canyon woodlands were substantially impacted during Late Archaic to Basketmaker II times (100 BC-AD 500) when agriculture became a major means of food production and the manufacture of pottery was introduced into the canyon. By the time of the Bonito phase, the local woodlands, especially the juniper component, had been decimated by centuries of continuous extraction of a slow-growing resource. The destabilizing impact resulting from recurrent woodland harvesting likely contributed to the environmental unpredictability and difficulty in procuring essential resources suffered by the Ancestral Puebloans prior to their ultimate departure from Chaco Canyon.


Subject(s)
Ecosystem , Forests , New Mexico , Trees
2.
Sci Rep ; 10(1): 10316, 2020 06 25.
Article in English | MEDLINE | ID: mdl-32587274

ABSTRACT

Understanding civilizations of the past and how they emerge and eventually falter is a primary research focus of archaeological investigations because these provocative data sets offer critical insights into long-term human behavior patterns, especially in regard to land use practices and sustainable environmental interactions. The ancient Maya serve as an intriguing example of this research focus, yet the details of their spectacular emergence in a tropical forest environment followed by their eventual demise have remained enigmatic. Tikal, one of the foremost of the ancient Maya cities, plays a central role in this discussion because of its sharp population decline followed by abandonment during the late 9th century CE. Our results, based on geochemical and molecular genetic assays on sediments from four of the main reservoirs, reveal that two of the largest reservoirs at Tikal, essential for the survival of the city during the dry seasons, were contaminated with high levels of mercury, phosphate and cyanobacteria known to produce deadly toxins. Our observations demonstrate severe pollution problems at a time when episodes of climatic aridity were prevalent. This combination of catastrophic events clearly threatened the sustainability of the city and likely contributed to its abandonment.

3.
PLoS One ; 13(6): e0198290, 2018.
Article in English | MEDLINE | ID: mdl-29902207

ABSTRACT

Questions about how archaeological populations obtained basic food supplies are often difficult to answer. The application of specialist techniques from non-archaeological fields typically expands our knowledge base, but can be detrimental to cultural interpretations if employed incorrectly, resulting in problematic datasets and erroneous conclusions not easily caught by the recipient archaeological community. One area where this problem has failed to find resolution is Chaco Canyon, New Mexico, the center of one of the New World's most vibrant ancient civilizations. Discussions of agricultural feasibility and its impact on local population levels at Chaco Canyon have been heavily influenced by studies of soil salinity. A number of researchers have argued that salinized soils severely limited local agricultural production, instead suggesting food was imported from distant sources, specifically the Chuska Mountains. A careful reassessment of existing salinity data as measured by electrical conductivity reveals critical errors in data conversion and presentation that have misrepresented the character of the area's soil and its potential impact on crops. We combine all available electrical conductivity data, including our own, and apply multiple established conversion methods in order to estimate soil salinity values and evaluate their relationship to agricultural productivity potential. Our results show that Chacoan soils display the same salinity ranges and spatial variability as soils in other documented, productive fields in semi-arid areas. Additionally, the proposed large-scale importation of food from the Chuska Mountains region has serious social implications that have not been thoroughly explored. We consider these factors and conclude that the high cost and extreme inflexibility of such a system, in combination with material evidence for local agriculture within Chaco Canyon, make this scenario highly unlikely. Both the soil salinity and archaeological data suggest that there is no justification for precluding the practice of local agriculture within Chaco Canyon.


Subject(s)
Agriculture/history , Soil/chemistry , Archaeology , Civilization , Crops, Agricultural/growth & development , History, Ancient , New Mexico , Salinity
4.
Sci Rep ; 7: 44031, 2017 03 09.
Article in English | MEDLINE | ID: mdl-28276513

ABSTRACT

Previously, a large platinum (Pt) anomaly was reported in the Greenland ice sheet at the Younger Dryas boundary (YDB) (12,800 Cal B.P.). In order to evaluate its geographic extent, fire-assay and inductively coupled plasma mass spectrometry (FA and ICP-MS) elemental analyses were performed on 11 widely separated archaeological bulk sedimentary sequences. We document discovery of a distinct Pt anomaly spread widely across North America and dating to the Younger Dryas (YD) onset. The apparent synchroneity of this widespread YDB Pt anomaly is consistent with Greenland Ice Sheet Project 2 (GISP2) data that indicated atmospheric input of platinum-rich dust. We expect the Pt anomaly to serve as a widely-distributed time marker horizon (datum) for identification and correlation of the onset of the YD climatic episode at 12,800 Cal B.P. This Pt datum will facilitate the dating and correlating of archaeological, paleontological, and paleoenvironmental data between sequences, especially those with limited age control.

5.
Proc Natl Acad Sci U S A ; 111(52): 18513-8, 2014 Dec 30.
Article in English | MEDLINE | ID: mdl-25512500

ABSTRACT

Tikal has long been viewed as one of the leading polities of the ancient Maya realm, yet how the city was able to maintain its substantial population in the midst of a tropical forest environment has been a topic of unresolved debate among researchers for decades. We present ecological, paleoethnobotanical, hydraulic, remote sensing, edaphic, and isotopic evidence that reveals how the Late Classic Maya at Tikal practiced intensive forms of agriculture (including irrigation, terrace construction, arboriculture, household gardens, and short fallow swidden) coupled with carefully controlled agroforestry and a complex system of water retention and redistribution. Empirical evidence is presented to demonstrate that this assiduously managed anthropogenic ecosystem of the Classic period Maya was a landscape optimized in a way that provided sustenance to a relatively large population in a preindustrial, low-density urban community. This landscape productivity optimization, however, came with a heavy cost of reduced environmental resiliency and a complete reliance on consistent annual rainfall. Recent speleothem data collected from regional caves showed that persistent episodes of unusually low rainfall were prevalent in the mid-9th century A.D., a time period that coincides strikingly with the abandonment of Tikal and the erection of its last dated monument in A.D. 869. The intensified resource management strategy used at Tikal-already operating at the landscape's carrying capacity-ceased to provide adequate food, fuel, and drinking water for the Late Classic populace in the face of extended periods of drought. As a result, social disorder and abandonment ensued.


Subject(s)
Civilization , Forests , Urban Renewal/history , History, Ancient , History, Medieval , Humans , Mexico
9.
Proc Natl Acad Sci U S A ; 110(23): E2088-97, 2013 Jun 04.
Article in English | MEDLINE | ID: mdl-23690611

ABSTRACT

Airbursts/impacts by a fragmented comet or asteroid have been proposed at the Younger Dryas onset (12.80 ± 0.15 ka) based on identification of an assemblage of impact-related proxies, including microspherules, nanodiamonds, and iridium. Distributed across four continents at the Younger Dryas boundary (YDB), spherule peaks have been independently confirmed in eight studies, but unconfirmed in two others, resulting in continued dispute about their occurrence, distribution, and origin. To further address this dispute and better identify YDB spherules, we present results from one of the largest spherule investigations ever undertaken regarding spherule geochemistry, morphologies, origins, and processes of formation. We investigated 18 sites across North America, Europe, and the Middle East, performing nearly 700 analyses on spherules using energy dispersive X-ray spectroscopy for geochemical analyses and scanning electron microscopy for surface microstructural characterization. Twelve locations rank among the world's premier end-Pleistocene archaeological sites, where the YDB marks a hiatus in human occupation or major changes in site use. Our results are consistent with melting of sediments to temperatures >2,200 °C by the thermal radiation and air shocks produced by passage of an extraterrestrial object through the atmosphere; they are inconsistent with volcanic, cosmic, anthropogenic, lightning, or authigenic sources. We also produced spherules from wood in the laboratory at >1,730 °C, indicating that impact-related incineration of biomass may have contributed to spherule production. At 12.8 ka, an estimated 10 million tonnes of spherules were distributed across ∼50 million square kilometers, similar to well-known impact strewnfields and consistent with a major cosmic impact event.


Subject(s)
Geology/methods , Meteoroids , Minor Planets , Geologic Sediments , History, Ancient , Microscopy, Electron, Scanning , Spectrometry, X-Ray Emission/methods , Wood
10.
Proc Natl Acad Sci U S A ; 109(31): 12408-13, 2012 Jul 31.
Article in English | MEDLINE | ID: mdl-22802627

ABSTRACT

The access to water and the engineered landscapes accommodating its collection and allocation are pivotal issues for assessing sustainability. Recent mapping, sediment coring, and formal excavation at Tikal, Guatemala, have markedly expanded our understanding of ancient Maya water and land use. Among the landscape and engineering feats identified are the largest ancient dam identified in the Maya area of Central America; the posited manner by which reservoir waters were released; construction of a cofferdam for dredging the largest reservoir at Tikal; the presence of ancient springs linked to the initial colonization of Tikal; the use of sand filtration to cleanse water entering reservoirs; a switching station that facilitated seasonal filling and release; and the deepest rock-cut canal segment in the Maya Lowlands. These engineering achievements were integrated into a system that sustained the urban complex through deep time, and they have implications for sustainable construction and use of water management systems in tropical forest settings worldwide.


Subject(s)
Agricultural Irrigation/history , Lakes , Water Supply/history , Anthropology, Cultural , Guatemala , History, Ancient , History, Medieval
11.
Proc Natl Acad Sci U S A ; 109(8): E463-70, 2012 Feb 21.
Article in English | MEDLINE | ID: mdl-22232662

ABSTRACT

In past and modern human societies, dogs have played an important role as hunting companions. Given considerable ethnographic evidence that dogs vary in their hunting abilities, this paper addresses the effects of key demographic variables, namely age and sex, on the amount of harvested game that dogs contribute in an indigenous Nicaraguan community. Controlling for variation in the time spent potentially hunting, male dogs and older dogs are significantly associated with greater harvests. These results may account for documented preferences for males in both archaeological and ethnographic contexts. Among societies in which dogs are used both as hunting companions and sources of food, the age-related delay in peak hunting ability also suggests a tradeoff that might explain the consumption of dogs shortly after they have reached adult size. Informant rankings of two cohorts of dogs indicate that residents of the community exhibit high agreement about the relative abilities of the dogs, and the rankings indicate that dogs from the same household exhibit comparable skill. There is little evidence that talented, highly-ranked dogs are provided a more nutritious diet, as measured by nitrogen-based and carbon-based isotopic analysis of hair samples. Overall, although dogs can be quite advantageous as hunting companions, this research suggests that the heterogeneity of hunting ability combines with the high mortality of dogs to impose risks on households that depend on dogs as a source of harvested meat.


Subject(s)
Animals, Domestic/physiology , Dogs/physiology , Ecosystem , Nutritional Status , Predatory Behavior , Animals , Humans , Logistic Models , Male , Meat , Models, Biological , Nicaragua , Regression Analysis , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...