Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
2.
Sci Rep ; 13(1): 16087, 2023 Sep 26.
Article in English | MEDLINE | ID: mdl-37752170

ABSTRACT

We present experimental results of the trace argon impurity puffing in the ohmic plasmas of Aditya-U tokamak performed to study the argon transport behaviour. Argon line emissions in visible and Vacuum Ultra Violet (VUV) spectral ranges arising from the plasma edge and core respectively are measured simultaneously. During the experiments, space resolved brightness profile of Ar1+ line emissions at 472.69 nm (3p44s 2P3/2-3p44p 2D3/2), 473.59 nm (3p44s 4P5/2-3p44p 4P3/2), 476.49 nm (3p44s 2P1/2-3p44p 2P3/2), 480.60 nm (3p44s 4P5/2-3p44p 4P5/2) are recorded using a high resolution visible spectrometer. Also, a VUV spectrometer has been used to simultaneously observe Ar13+ line emission at 18.79 nm (2s22p 2P3/2-2s2p2 2P3/2) and Ar14+ line emission at 22.11 nm (2s2 1S0-2s2p 1P1). The diffusivity and convective velocity of Ar are obtained by comparing the measured radial emissivity profile of Ar1+ emission and the line intensity ratio of Ar13+ and Ar14+ ions, with those simulated using the impurity transport code, STRAHL. Argon diffusivities ~ 12 m2/s and ~ 0.3 m2/s have been observed in the edge (ρ > 0.85) and core region of the Aditya-U, respectively. The diffusivity values both in the edge and core region are found to be higher than the neo-classical values suggesting that the argon impurity transport is mainly anomalous in the Aditya-U tokamak. Also, an inward pinch of ~ 10 m/s mainly driven by Ware pinch is required to match the measured and simulated data. The measured peaked profile of Ar density suggests impurity accumulation in these discharges.

3.
Rev Sci Instrum ; 93(11): 113552, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461425

ABSTRACT

Spectroscopy in vacuum ultraviolet (VUV) and visible ranges plays an important role in the investigation and diagnosis of tokamak plasmas. However, under harsh environmental conditions of fusion grade devices, such as ITER, VUV-visible systems encounter many issues due to the degradation of optical components used in such systems. Here, near-infrared (NIR) spectroscopy has become an effective tool in understanding the edge plasma dynamics. Considering its importance, a NIR spectroscopic diagnostic has been developed and installed on the ADITYA-U tokamak. The system consists of a 0.5 m spectrometer having three gratings with different groove densities, and it is coupled with a linear InGaAs photodiode array. Radiation from the ADITYA-U edge plasma has been collected using a collimating lens and optical fiber combination and transported to the spectrometer. The spectrum in the NIR range from the ADITYA-U plasma has been recorded using this system, in which Paß and Paγ along with many spectral lines from neutral and singly ionized impurities have been observed. The influxes of H and C have been estimated from measurements. The H influx value is found to be 2.8 × 1016 and 1.9 × 1016 particles cm-2 s-1 from neutral hydrogen lines Hα and Paß, respectively, and the C influx value is found to be 3.5 × 1015 and 2.9 × 1015 particles cm-2 s-1 from the neutral carbon and singly ionized carbon, respectively. A good agreement is seen between these results and the results obtained by using a routine photomultiplier tube based diagnostic.

4.
Rev Sci Instrum ; 93(11): 113548, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461494

ABSTRACT

A Fast Visible Imaging Diagnostic (FVID) system, measuring the visible light emission spectrum (400-1000 nm) from tokamak plasma, has been installed on the Aditya-U tokamak to monitor the two-dimensional dynamics of the poloidal cross section of the plasma. In this work, we present the design and installation of the FVID system on the Aditya-U tokamak. The evolution of plasma and plasma-wall interactions is described. The signature of the runaway electron beam in visible imaging and its correlation with other diagnostics is presented. The estimation of the electron cyclotron resonance layer position during pre-ionization is also discussed in this work.

5.
Rev Sci Instrum ; 93(11): 113529, 2022 Nov 01.
Article in English | MEDLINE | ID: mdl-36461525

ABSTRACT

Nascent observations about the influence of kinetic instabilities on electron cyclotron emission (ECE) from runaway electrons (REs) have been detected and explored at the Aditya-Upgrade (Aditya-U) tokamak. The developed broadband ECE radiometer system offers wideband measurements by integrating several radio frequency units with a fixed intermediate frequency receiver with multiple channels, which is a novel approach to meet the needs of the localized measurements at various toroidal fields and extend the system dynamic range. The low density (ne ≤ 1 × 10-19 m-3) plasma discharges at Aditya-U are consistently accompanied by a 20%-40% increase in the ECE radiometer signal amplitude within 100 µs and sporadic step-like modulations. The Pitch Angle Scattering (PAS) of REs induced by kinetic instabilities is a potential candidate for their occurrence. This steep jump in the radiometer signals was detected due to its high temporal resolution of 10 µs. A "PREDICT" code that employs the relativistic test particle model validates these experimental findings of the radiometer diagnostic for the first time for Aditya-U tokamak. Preliminary observations of the ECE radiometer signals also show that additional gas puffs can be used to vary the trigger timings of such PAS events or even lead to their complete avoidance.

6.
Rev Sci Instrum ; 93(9): 093512, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36182481

ABSTRACT

Runaway electrons (REs) are passively studied by hard x-ray (HX) emissions generated by REs. A LaBr3(Ce) detector-based HX spectroscopic diagnostic (operational within ∼75 keV to 3.5 MeV) has been set up on the ADITYA-U. The diagnostic acquisition software utility is upgraded to obtain the temporal evolution of the HX spectrum to understand the RE energy distribution in plasma during its various phases. The peak position moves to lower energy for Ohmically heated discharges (200-80 keV), indicating a relative increase in the thermal particle content in the plasma. The peak position of RE energy shows a decreasing tendency with increasing ne with Ne gas puffing and termination of the electron cyclotron resonance pulse.

7.
Rev Sci Instrum ; 92(6): 063517, 2021 Jun 01.
Article in English | MEDLINE | ID: mdl-34243548

ABSTRACT

A high-resolution spectroscopic diagnostic for the measurement of spatial profiles of impurity ion toroidal rotation velocities on the ADITYA-U tokamak has been upgraded to cover the complete plasma minor radius. Earlier, the coverage of diagnostics toward the plasma edge was restricted due to the placement of collection optics on the tangential port outside the vacuum vessel. The coverage of the full plasma minor radius, from 0 to 24 cm, has been achieved using the newly designed and developed collection optics that have seven lines of sight to view the tokamak plasma mounted inside a customized re-entrant view port which is installed in the shadow of the limiter inside the vacuum vessel. The upgraded diagnostic also includes a faster charged coupled device detector with a smaller pixel size for the detection of a small wavelength shift. The complete spatial profile has been measured using the Doppler shifted passive change exchange spectral line at 529.0 nm from the C5+ ion. In this article, we present the collection optics' design, installation, calibration, and results obtained using the upgraded diagnostic.

8.
Rev Sci Instrum ; 92(5): 053548, 2021 May 01.
Article in English | MEDLINE | ID: mdl-34243287

ABSTRACT

The spectroscopic studies of medium and high Z impurities have been the subject of interest in fusion research due to their role in mitigating plasma disruption and reducing heat load on the plasma facing components. Line emissions from these impurities provide the rotation velocity and ion temperature measurements along with the understanding of the overall impurity behavior in plasma. In the Aditya-U tokamak, the spatially resolved Ar II line emissions have been observed using a high resolution multi-track spectroscopic diagnostic consisting of a 1 m Czerny-Turner spectrometer coupled with a charge coupled device (CCD) detector using seven lines of sight viewing plasma tangentially along the toroidal direction. The spatially resolved Ar II lines at 458.96 nm have been observed. The singly ionized Ar emission peaks at the radial location of ρ = 0.8 of the plasma having a minor radius of 25 cm. Moreover, a 0.5 m UV-visible spectrometer coupled with a CCD detector and having a line of sight passing through the plasma midplane from the radial port was used to record visible Ar survey spectra within the 670-810 nm wavelength range, and all these lines have been identified for further analysis.

9.
Rev Sci Instrum ; 85(11): 11E411, 2014 Nov.
Article in English | MEDLINE | ID: mdl-25430318

ABSTRACT

A photo multiplier tube (PMT) array based spectroscopic diagnostic with fast time response of 10 µs and spatial resolution ∼3 cm has been developed and installed on Aditya tokamak to study the spatial and temporal behavior of Hα emissions from typical discharges. Collimated light has been collected from the plasma along 16 lines of sight passing through entire plasma poloidal cross section of Aditya and detected by two 8 channels PMT arrays after selecting Hα emission using interference filter. The studies are carried out during plasma formation phase of Aditya by changing vertical field and its delay with respect to loop voltage. It is observed that plasma initiated in the high field side in typical discharges of Aditya. The plasma formation position is matched with null field location estimated through simulation.

SELECTION OF CITATIONS
SEARCH DETAIL
...