Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Theor Appl Genet ; 128(7): 1407-19, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25893467

ABSTRACT

KEY MESSAGE: The distribution of starch synthase I and starch branching enzyme IIb between the starch granule and amyloplast stroma plays an important role in determining endosperm amylose content of cereal grains. Starch synthase IIa (SSIIa) catalyses the polymerisation of intermediate length glucan chains of amylopectin in the endosperm of cereals. Mutations of SSIIa genes in barley and wheat and inactive SSIIa variant in rice induce similar effects on the starch structure and the amylose content, but the severity of the phenotypes is different. This study compared the levels of transcripts and partitioning of proteins of starch synthase I (SSI) and starch branching enzyme IIb (SBEIIb) inside and outside the starch granules in the developing endosperms of these ssIIa mutants and inactive SSIIa variant. Pleiotropic effects on starch granule-bound proteins suggested that the different effects of SSIIa mutations on endosperm amylose content of barley, wheat and rice are determined by the distribution of SSI and SBEIIb between the starch granule and amyloplast stroma in cereals. Regulation of starch synthesis in ssIIa mutants and inactive SSIIa variant may be at post-translational level or the altered amylopectin structure deprives the affinity of SSI and SBEIIb to amylopectin.


Subject(s)
Amylose/chemistry , Endosperm/chemistry , Hordeum/genetics , Oryza/genetics , Plant Proteins/genetics , Starch Synthase/genetics , Triticum/genetics , 1,4-alpha-Glucan Branching Enzyme/chemistry , DNA, Plant/genetics , Endosperm/enzymology , Genetic Pleiotropy , Genotype , Hordeum/enzymology , Mutation , Oryza/enzymology , Phenotype , Plastids/enzymology , Starch Synthase/chemistry , Triticum/enzymology
2.
J Agric Food Chem ; 57(10): 4042-50, 2009 May 27.
Article in English | MEDLINE | ID: mdl-21314195

ABSTRACT

Near-infrared reflectance (NIR) spectroscopy was used in the characterization of grain morphology mutants of barley ( Hordeum vulgare L.) in relation to grain nitrogen (N) content and protein composition. Derivative spectroscopy provided spectra with enhanced resolution, allowing wavelengths to be identified with clear differences in contribution from associated chemical bonds. Comparisons of fourth-derivative spectra of wholemeal flour from high-N grains with flour from low-N grains identified wavelengths at which there were statistically significant differences between the groups. Their importance was independently confirmed by step-up regression using these wavelengths to generate an equation predicting N content (R(2) = 0.98). Fourth-derivative spectral comparisons also allowed novel biochemical differences to be predicted. Visual assessment of the spectra of all mutants revealed a variable region (1470-1520 nm, corresponding to N-H stretch vibrations) that allowed two extreme sets to be defined. The protein extracted from these two sets differed markedly in hordein content.


Subject(s)
Hordeum/classification , Hordeum/genetics , Mutation/genetics , Seeds/chemistry , Spectroscopy, Near-Infrared/methods , Flour/analysis , Glutens/analysis , Nitrogen/analysis , Plant Proteins/analysis , Seeds/anatomy & histology , Seeds/genetics , Spectrometry, Mass, Matrix-Assisted Laser Desorption-Ionization
SELECTION OF CITATIONS
SEARCH DETAIL
...