Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Robot AI ; 6: 98, 2019.
Article in English | MEDLINE | ID: mdl-33501113

ABSTRACT

Optical see-through automotive head-up displays (HUDs) are a form of augmented reality (AR) that is quickly gaining penetration into the consumer market. Despite increasing adoption, demand, and competition among manufacturers to deliver higher quality HUDs with increased fields of view, little work has been done to understand how best to design and assess AR HUD user interfaces, and how to quantify their effects on driver behavior, performance, and ultimately safety. This paper reports on a novel, low-cost, immersive driving simulator created using a myriad of custom hardware and software technologies specifically to examine basic and applied research questions related to AR HUDs usage when driving. We describe our experiences developing simulator hardware and software and detail a user study that examines driver performance, visual attention, and preferences using two AR navigation interfaces. Results suggest that conformal AR graphics may not be inherently better than other HUD interfaces. We include lessons learned from our simulator development experiences, results of the user study and conclude with limitations and future work.

2.
IEEE Trans Vis Comput Graph ; 24(11): 2875-2885, 2018 11.
Article in English | MEDLINE | ID: mdl-30235134

ABSTRACT

The automotive industry is rapidly developing new in-vehicle technologies that can provide drivers with information to aid awareness and promote quicker response times. Particularly, vehicles with augmented reality (AR) graphics delivered via head-up displays (HUDs) are nearing mainstream commercial feasibility and will be widely implemented over the next decade. Though AR graphics have been shown to provide tangible benefits to drivers in scenarios like forward collision warnings and navigation, they also create many new perceptual and sensory issues for drivers. For some time now, designers have focused on increasing the realism and quality of virtual graphics delivered via HUDs, and recently have begun testing more advanced 3D HUD systems that deliver volumetric spatial information to drivers. However, the realization of volumetric graphics adds further complexity to the design and delivery of AR cues, and moreover, parameters in this new design space must be clearly and operationally defined and explored. In this work, we present two user studies that examine how driver performance and visual attention are affected when using fixed and animated AR HUD interface design approaches in driving scenarios that require top-down and bottom-up cognitive processing. Results demonstrate that animated design approaches can produce some driving gains (e.g., in goal-directed navigation tasks) but often come at the cost of response time and distance. Our discussion yields AR HUD design recommendations and challenges some of the existing assumptions of world-fixed conformal graphic approaches to design.

SELECTION OF CITATIONS
SEARCH DETAIL
...