Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cancer Lett ; 588: 216783, 2024 Apr 28.
Article in English | MEDLINE | ID: mdl-38462034

ABSTRACT

Inhibition of K-RAS effectors like B-RAF or MEK1/2 is accompanied by treatment resistance in cancer patients via re-activation of PI3K and Wnt signaling. We hypothesized that myotubularin-related-protein-7 (MTMR7), which inhibits PI3K and ERK1/2 signaling downstream of RAS, directly targets RAS and thereby prevents resistance. Using cell and structural biology combined with animal studies, we show that MTMR7 binds and inhibits RAS at cellular membranes. Overexpression of MTMR7 reduced RAS GTPase activities and protein levels, ERK1/2 phosphorylation, c-FOS transcription and cancer cell proliferation in vitro. We located the RAS-inhibitory activity of MTMR7 to its charged coiled coil (CC) region and demonstrate direct interaction with the gastrointestinal cancer-relevant K-RASG12V mutant, favouring its GDP-bound state. In mouse models of gastric and intestinal cancer, a cell-permeable MTMR7-CC mimicry peptide decreased tumour growth, Ki67 proliferation index and ERK1/2 nuclear positivity. Thus, MTMR7 mimicry peptide(s) could provide a novel strategy for targeting mutant K-RAS in cancers.


Subject(s)
Neoplasms , Protein Tyrosine Phosphatases, Non-Receptor , Animals , Humans , Mice , Peptides , Phosphatidylinositol 3-Kinases/metabolism , Protein Tyrosine Phosphatases, Non-Receptor/genetics , Protein Tyrosine Phosphatases, Non-Receptor/metabolism , Signal Transduction
2.
Angew Chem Int Ed Engl ; 63(17): e202401080, 2024 Apr 22.
Article in English | MEDLINE | ID: mdl-38421342

ABSTRACT

The role of monoclonal antibodies as vehicles to deliver payloads has evolved as a powerful tool in cancer therapy in recent years. The clinical development of therapeutic antibody conjugates with precise payloads holds great promise for targeted therapeutic interventions. The use of affinity-peptide mediated functionalization of native off-the-shelf antibodies offers an effective approach to selectively modify IgG antibodies with a drug-antibody ratio (DAR) of 2. Here, we report the traceless, peptide-directed attachment of two hydroxylamines to native IgGs followed by chemoselective potassium acyltrifluoroborate (KAT) ligation with quinolinium acyltrifluoroborates (QATs), which provide enhanced ligation rates with hydroxylamines under physiological conditions. By applying KAT ligation to the modified antibodies, conjugation of small molecules, proteins, and oligonucleotides to off-the-shelf IgGs proceeds efficiently, in good yields, and with simultaneous cleavage of the affinity peptide-directing moiety.


Subject(s)
Immunoglobulin G , Lysine , Hydroxylamines , Peptides/chemistry , Antibodies, Monoclonal/chemistry
3.
EJNMMI Res ; 13(1): 32, 2023 Apr 19.
Article in English | MEDLINE | ID: mdl-37074529

ABSTRACT

PURPOSE: The angiotensin converting enzyme-2 (ACE2)-entry receptor of SARS-CoV-2-and its homologue, the angiotensin-converting enzyme (ACE), play a pivotal role in maintaining cardiovascular homeostasis. Potential changes in ACE2 expression levels and dynamics after SARS-CoV-2 infection have been barely investigated. The aim of this study was to develop an ACE2-targeting imaging agent as a noninvasive imaging tool to determine ACE2 regulation. METHODS: DOTA-DX600, NODAGA-DX600 and HBED-CC-DX600 were obtained through custom synthesis and labeled with gallium-67 (T1/2 = 3.26 d) as a surrogate radioisotope for gallium-68 (T1/2 = 68 min). ACE2- and ACE-transfected HEK cells were used for the in vitro evaluation of these radiopeptides. The in vivo tissue distribution profiles of the radiopeptides were assessed in HEK-ACE2 and HEK-ACE xenografted mice and imaging studies were performed using SPECT/CT. RESULTS: The highest molar activity was obtained for [67Ga]Ga-HBED-CC-DX600 (60 MBq/nmol), whereas the labeling efficiency of the other peptides was considerably lower (20 MBq/nmol). The radiopeptides were stable over 24 h in saline (> 99% intact peptide). All radiopeptides showed uptake in HEK-ACE2 cells (36-43%) with moderate ACE2-binding affinity (KD value: 83-113 nM), but no uptake in HEK-ACE cells (< 0.1%) was observed. Accumulation of the radiopeptides was observed in HEK-ACE2 xenografts (11-16% IA/g) at 3 h after injection, but only background signals were seen in HEK-ACE xenografts (< 0.5% IA/g). Renal retention was still high 3 h after injection of [67Ga]Ga-DOTA-DX600 and [67Ga]Ga-NODAGA-DX600 (~ 24% IA/g), but much lower for [67Ga]Ga-HBED-CC-DX600 (7.2 ± 2.2% IA/g). SPECT/CT imaging studies confirmed the most favorable target-to-nontarget ratio for [67Ga]Ga-HBED-CC-DX600. CONCLUSIONS: This study demonstrated ACE2 selectivity for all radiopeptides. [67Ga]Ga-HBED-CC-DX600 was revealed as the most promising candidate due to its favorable tissue distribution profile. Importantly, the HBED-CC chelator enabled 67Ga-labeling at high molar activity, which would be essential to obtain images with high signal-to-background contrast to detect (patho)physiological ACE2 expression levels in patients.

4.
J Am Chem Soc ; 143(42): 17557-17565, 2021 10 27.
Article in English | MEDLINE | ID: mdl-34647724

ABSTRACT

Potassium acyltrifluoroborates (KATs) undergo chemoselective amide-forming ligations with hydroxylamines. Under aqueous, acidic conditions these ligations can proceed rapidly, with rate constants of ∼20 M-1 s-1. The requirement for lower pH to obtain the fastest rates, however, limits their use with certain biomolecules and precludes in vivo applications. By mechanistic investigations into the KAT ligation, including kinetic studies, X-ray crystallography, and DFT calculations, we have identified a key role for a proton in accelerating the ligation. We applied this knowledge to the design and synthesis of 8-quinolyl acyltrifluoroborates, a new class of KATs that ligates with hydroxylamines at pH 7.4 with rate constants >4 M-1 s-1. We trace the enhanced rate at physiological pH to unexpectedly high basicity of the 8-quinoline-KATs, which leads to their protonation even under neutral conditions. This proton assists the formation of the key tetrahedral intermediate and activates the leaving groups on the hydroxylamine toward a concerted 1,2-BF3 shift that leads to the amide product. We demonstrate that the fast ligations at pH 7.4 can be carried out with a protein substrate at micromolar concentrations.


Subject(s)
Amides/chemical synthesis , Borates/chemistry , Quinolines/chemistry , Borates/chemical synthesis , Green Fluorescent Proteins/chemistry , Green Fluorescent Proteins/genetics , Hydroxylamines/chemistry , Kinetics , Models, Chemical , Mutation , Quinolines/chemical synthesis
5.
ACS Appl Mater Interfaces ; 13(24): 29113-29121, 2021 Jun 23.
Article in English | MEDLINE | ID: mdl-34105349

ABSTRACT

The efficient and bioorthogonal chemical ligation reaction between potassium acyltrifluoroborates (KATs) and hydroxylamines (HAs) was used for the surface functionalization of a self-assembled monolayer (SAM) with biomolecules. An alkane thioether molecule with one terminal KAT group (S-KAT) was synthesized and adsorbed onto a gold surface, placing a KAT group on the top of the monolayer (KAT-SAM). As an initial test case, an aqueous solution of a hydroxylamine (HA) derivative of poly(ethylene glycol) (PEG) (HA-PEG) was added to this KAT-SAM at room temperature to perform the surface KAT ligation. Quartz crystal microbalance with dissipation (QCM-D) monitoring confirmed the rapid attachment of the PEG moiety onto the SAM. By surface characterization methods such as contact angle and ellipsometry, the attachment of PEG layer was confirmed, and covalent amide-bond formation was established by X-ray photoelectron spectroscopy (XPS). In a proof-of-concept study, the applicability of this surface KAT ligation for the attachment of biomolecules to surfaces was tested using a model protein, green fluorescent protein (GFP). A GFP was chemically modified with an HA linker to synthesize HA-GFP and added to the KAT-SAM under aqueous dilute conditions. A rapid attachment of the GFP on the surface was observed in real time by QCM-D. Despite the fact that such biomolecules have a variety of unprotected functional groups within their structures, the surface KAT ligation proceeded rapidly in a chemoselective manner. Our results demonstrate the versatility of the KAT ligation for the covalent attachment of a variety of water-soluble molecules onto SAM surfaces under dilute and biocompatible conditions to form stable, natural amide bonds.


Subject(s)
Borates/chemistry , Green Fluorescent Proteins/chemistry , Immobilized Proteins/chemistry , Membranes, Artificial , Hydroxylamines/chemistry , Polyethylene Glycols/chemistry , Proof of Concept Study
6.
Angew Chem Int Ed Engl ; 59(39): 16847-16858, 2020 09 21.
Article in English | MEDLINE | ID: mdl-32510826

ABSTRACT

Acylboron compounds are emerging as versatile functional groups with applications in multiple research fields. Their synthesis, however, is still challenging and requires innovative methods. This Minireview provides an overview on the obstacles of acylboron synthesis and highlights notable advances within the last three years on new strategies to overcome the challenges posed by the formation of acyl-boron bonds.

7.
Chem Commun (Camb) ; 56(5): 723-726, 2020 Jan 16.
Article in English | MEDLINE | ID: mdl-31840690

ABSTRACT

A new prosthetic group is reported for 18F-labelling of peptides and proteins based on the chemoselective ligation of potassium acyltrifluoroborates (KATs) and hydroxylamines without any detectable 18F/19F isotope exchange at the acyltrifluoroborate moiety. The new building block is appended via a common amide bond at room temperature with no need for protecting groups which enables an effective orthogonal 18F-radiolabelling.


Subject(s)
Borates/chemistry , Fluorine Radioisotopes/chemistry , Isotope Labeling/methods , Peptides/chemistry , Proteins/chemistry , Pyridines/chemistry , Animals , Indicators and Reagents/chemistry , Male , Mice, Inbred C57BL , Peptides/metabolism , Positron-Emission Tomography/methods , Proteins/metabolism , Radiopharmaceuticals/chemistry , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...