Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
EMBO Mol Med ; 15(12): e17282, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-37942753

ABSTRACT

Cell-free DNA (cfDNA) can be isolated and sequenced from blood and/or urine of cancer patients. Conventional short-read sequencing lacks deployability and speed and can be biased for short cfDNA fragments. Here, we demonstrate that with Oxford Nanopore Technologies (ONT) sequencing we can achieve delivery of genomic and fragmentomic data from liquid biopsies. Copy number aberrations and cfDNA fragmentation patterns can be determined in less than 24 h from sample collection. The tumor-derived cfDNA fraction calculated from plasma of lung cancer patients and urine of bladder cancer patients was highly correlated (R = 0.98) with the tumor fraction calculated from short-read sequencing of the same samples. cfDNA size profile, fragmentation patterns, fragment-end composition, and nucleosome profiling near transcription start sites in plasma and urine exhibited the typical cfDNA features. Additionally, a high proportion of long tumor-derived cfDNA fragments (> 300 bp) are recovered in plasma and urine using ONT sequencing. ONT sequencing is a cost-effective, fast, and deployable approach for obtaining genomic and fragmentomic results from liquid biopsies, allowing the analysis of previously understudied cfDNA populations.


Subject(s)
Cell-Free Nucleic Acids , Lung Neoplasms , Nanopore Sequencing , Humans , Cell-Free Nucleic Acids/genetics , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Genomics/methods , Sequence Analysis, DNA , DNA/genetics , Biomarkers, Tumor/genetics
2.
Oncol Lett ; 17(2): 1417-1424, 2019 Feb.
Article in English | MEDLINE | ID: mdl-30675195

ABSTRACT

S100A10, a member of the S100 protein family, commonly forms a heterotetrameric complex with Annexin A2. This is essential for the generation of cellular plasmin from plasminogen, which leads to a cascade of molecular events crucial for tumor progression. S100A10 upregulation has been reported in a number of cancers, suggesting that it may have potential as a prognostic biomarker, as well as predicting sensitivity to anticancer drugs. This review evaluates the direct and indirect relationships between S100A10 and cancer progression by investigating its role in cancer. Research papers published on PubMed and Google Scholar between 2007-2017 were collated and reviewed. We concluded that S100A10 affects the development of the hallmarks of cancer as explained by Hanahan and Weinberg in 2011, most notably by activating the invasion and metastasis of cancer cells. However, further studies are required to explore the underlying biological mechanisms of S100A10.

SELECTION OF CITATIONS
SEARCH DETAIL