Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 50
Filter
Add more filters










Publication year range
1.
Plant Physiol Biochem ; 211: 108711, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38733941

ABSTRACT

Trace heavy metals (HMs) such as copper (Cu) and nickel (Ni) are toxic to plants, especially tomato at high levels. In this study, biochar (BC) was treated with amino acids (AA) to enhance amino functional groups, which effectively alleviated the adverse effects of heavy metals (HMs) on tomato growth. Hence, this study aimed to evaluate the effect of glycine and alanine modified BC (GBC/ABC) on various tomato growth parameters, its physiology, fruit yield and Cu/Ni uptake under Cu and Ni stresses. In a pot experiment, there was 21 treatments with three replications having two rates of simple BC and glycine/alanine enriched BC (0.5% and 1% (w/w). Cu and Ni stresses were added at 150 mg kg-1 respectively. Plants were harvested after 120 days of sowing and subjected to various analysis. Under Cu and Ni stresses, tomato roots accumulated more Cu and Ni than shoots and fruits, while GBC and ABC application significantly enhanced the root and shoot dry weight irrelevant to the stress conditions. Both rates of GBC decreased the malondialdehyde and hydrogen peroxide levels in plants. The addition of 0.5% GBC with Cu enhanced the tomato fruit dry weight by 1.3 folds in comparison to the control treatment; while tomato fruit juice content also increased (50%) in the presence of 0.5% GBC with Ni as compared to control. In summary, these results demonstrated that lower rate of GBC∼0.5% proved to be the best in mitigating the Cu and Ni stress on tomato plant growth by enhancing the fruit production.

2.
Plant Sci ; 343: 112085, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38588983

ABSTRACT

Plants live in a highly dynamic environment and require to rapidly respond to a plethora of environmental stimuli, so that to maintain their optimal growth and development. A small plant peptide, rapid alkalization factor (RALF), can rapidly increase the pH value of the extracellular matrix in plant cells. RALFs always function with its corresponding receptors. Mechanistically, effective amount of RALF is induced and released at the critical period of plant growth and development or under different external environmental factors. Recent studies also highlighted the role of RALF peptides as important regulators in plant intercellular communications, as well as their operation in signal perception and as ligands for different receptor kinases on the surface of the plasma membrane, to integrate various environmental cues. In this context, understanding the fine-print of above processes may be essential to solve the problems of crop adaptation to various harsh environments under current climate trends scenarios, by genetic means. This paper summarizes the current knowledge about the structure and diversity of RALF peptides and their roles in plant development and response to stresses, highlighting unanswered questions and problems to be solved.


Subject(s)
Plant Proteins , Plants , Plant Proteins/metabolism , Plants/genetics , Plants/metabolism , Peptides , Phosphotransferases/metabolism , Plant Development
3.
J Pineal Res ; 76(1): e12937, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38241678

ABSTRACT

Seed germination (SG) is the first stage in a plant's life and has an immense importance in sustaining crop production. Abiotic stresses reduce SG by increasing the deterioration of seed quality, and reducing germination potential, and seed vigor. Thus, to achieve a sustainable level of crop yield, it is important to improve SG under abiotic stress conditions. Melatonin (MEL) is an important biomolecule that interplays in developmental processes and regulates many adaptive responses in plants, especially under abiotic stresses. Thus, this review specifically summarizes and discusses the mechanistic basis of MEL-mediated SG under abiotic stresses. MEL regulates SG by regulating some stress-specific responses and some common responses. For instance, MEL induced stress specific responses include the regulation of ionic homeostasis, and hydrolysis of storage proteins under salinity stress, regulation of C-repeat binding factors signaling under cold stress, starch metabolism under high temperature and heavy metal stress, and activation of aquaporins and accumulation of osmolytes under drought stress. On other hand, MEL mediated regulation of gibberellins biosynthesis and abscisic acid catabolism, redox homeostasis, and Ca2+ signaling are amongst the common responses. Nonetheless factors such as endogenous MEL contents, plant species, and growth conditions also influence above-mentioned responses. In conclusion, MEL regulates SG under abiotic stress conditions by interacting with different physiological mechanisms.


Subject(s)
Germination , Melatonin , Germination/physiology , Melatonin/pharmacology , Seeds , Stress, Physiological , Plants/metabolism , Abscisic Acid/metabolism , Gene Expression Regulation, Plant
6.
Front Plant Sci ; 14: 1226484, 2023.
Article in English | MEDLINE | ID: mdl-37636098

ABSTRACT

Microplastic (MP) pollution is becoming a global problem due to the resilience, long-term persistence, and robustness of MPs in different ecosystems. In terrestrial ecosystems, plants are exposed to MP stress, thereby affecting overall plant growth and development. This review article has critically analyzed the effects of MP stress in plants. We found that MP stress-induced reduction in plant physical growth is accompanied by two complementary effects: (i) blockage of pores in seed coat or roots to alter water and nutrient uptake, and (ii) induction of drought due to increased soil cracking effects of MPs. Nonetheless, the reduction in physiological growth under MP stress is accompanied by four complementary effects: (i) excessive production of ROS, (ii) alteration in leaf and root ionome, (iii) impaired hormonal regulation, and (iv) decline in chlorophyll and photosynthesis. Considering that, we suggested that targeting the redox regulatory mechanisms could be beneficial in improving tolerance to MPs in plants; however, antioxidant activities are highly dependent on plant species, plant tissue, MP type, and MP dose. MP stress also indirectly reduces plant growth by altering soil productivity. However, MP-induced negative effects vary due to the presence of different surface functional groups and particle sizes. In the end, we suggested the utilization of agronomic approaches, including the application of growth regulators, biochar, and replacing plastic mulch with crop residues, crop diversification, and biological degradation, to ameliorate the effects of MP stress in plants. The efficiency of these methods is also MP-type-specific and dose-dependent.

7.
Plants (Basel) ; 12(14)2023 Jul 16.
Article in English | MEDLINE | ID: mdl-37514274

ABSTRACT

Seed germination is a crucial stage in the life cycle of annuals in arid, saline regions and is particularly vulnerable to abiotic stresses. Peganum harmala, a valuable medicinal plant, has limited research on its seed germination response to different environmental stresses in the arid, saline regions of Central Asia. To investigate this, we studied the effects of various temperature regimes (ranging from 20/5 to 35/20 °C), light exposure (12 hours light/12 hours dark and continuous dark), seven levels of polyethylene glycol (PEG-6000) concentration (ranging from 0-30%), and four types of salinity (ranging from 0-600 mmol L-1). Our findings show that photoperiod and temperature significantly influence germination. Optimal temperature range for seed germination was observed at 30/15 °C, with simulated critical and limit values of drought tolerance being highest (17.30% and 24.98%). However, higher temperatures (35/20 °C) and lower temperatures (20/5 °C) reduced the critical and limit values of drought tolerance. Additionally, the type and concentration of salinity had a significant effect on the seed germination, shoot, and root lengths of P. harmala. Regression analysis indicated that the critical values of NaCl, Na2SO4, NaHCO3, and Na2CO3 tolerance during germination were 178 mmol L-1, 101 mmol L-1, 106 mmol L-1, and 54 mmol L-1, respectively. Salinity inhibition on seed germination followed the order: NaCl < NaHCO3 < Na2SO4 < Na2CO3. Moreover, NaCl, Na2SO4, NaHCO3, and Na2CO3 significantly inhibited the growth of P. harmala seedlings in both shoots and roots. Our study demonstrates the sensitivity of P. harmala to environmental factors such as light, temperature, drought, and salinity. The study provides valuable information on the germination ecology of P. harmala under diverse ecological scenarios, which can be useful in developing efficient propagation and utilization of this medicinal plant.

8.
Environ Sci Pollut Res Int ; 30(37): 86632-86655, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37438501

ABSTRACT

The pollution of microplastics (MPs) is a worldwide major concern, as they have become a major part of our food chain. MPs enter our ecosystem via different pathways, including anthropogenic activities and improper disposal of plastics. The aim of this article is to review the current scientific literature related to MPs and how they affect different life forms on earth. Briefly, MPs induced negative effects on humans are primarily linked with the oxidative stress and disruption in immunity. MPs not only affect the soil chemical and physical properties such as reduction in soil health and productivity but also impose harmful effects on soil microorganisms. Moreover, MP-induced plant growth reduction results from three complementary mechanisms: (i) reduction in root and shoot growth, (ii) reduction in photosynthesis accompanied by higher reactive oxygen species (ROS) production, and (iii) reduction in nutrient uptake via altered root growth. Given the negative effects of MPs on different life forms, it is important to remove or remediate them. We have discussed different MP removal methods including coagulation, membrane filtration technology, biochar, and biological degradation of MPs in soil and wastewater effluents. The use of ozone as ultrafiltration technique has also been shown as the most promising technique for MP removal. Finally, some future research recommendations are also put forward at the end to further enhance our understanding of the MPs induced negative effects on different life forms. The flowchart shows the interaction of MPs from water contaminated with MPs with different parts of the ecosystem and final interaction with human health.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics , Ecosystem , Anthropogenic Effects , Biological Transport , Soil
9.
Environ Sci Pollut Res Int ; 30(24): 66113-66124, 2023 May.
Article in English | MEDLINE | ID: mdl-37097582

ABSTRACT

Glycophyte biomass - derived biochars have proven to be effective in the amelioration of acidic soil. However, there is scarce information on the characteristics and soil amelioration effects of halophyte-derived biochars. In this study, a typical halophyte Salicornia europaea, which is mainly distributed in the saline soils and salt-lake shores of China, and a glycophyte Zea mays, which is widely planted in the north of China, were selected to produce biochars with a pyrolysis process at 500 °C for 2 h. S. europaea-derived and Z. mays-derived biochars were characterized in elemental content, pores, surface area, and surface functional groups, and then by using a pot experiment their potential utilizable value as acidic soil conditioner was evaluated. The results showed that compared with Z. mays-derived biochar, S. europaea-derived biochar displayed higher pH, ash contents, base cations (K+, Ca2+, Na+, and Mg2+) contents and exhibited more larger surface area and pore volume than Z. mays-derived biochar. Both biochars had abundant oxygen-containing functional groups. Upon treating the acidic soil, the pH of acidic soil was increased by 0.98, 2.76, and 3.36 units after the addition of 1%, 2%, and 4% S. europaea-derived biochar, while it was increased only by 0.10, 0.22, and 0.56 units at 1%, 2%, and 4% Z. mays-derived biochar. High alkalinity in S. europaea-derived biochar was the main reason for the increase of pH value and base cations in acidic soil. Thus, application of halophyte biochar such as S. europaea-derived biochar is an alternative method for the amelioration of acidic soils.


Subject(s)
Chenopodiaceae , Soil Pollutants , Soil/chemistry , Salt-Tolerant Plants , Charcoal/chemistry , Soil Pollutants/analysis
10.
Biology (Basel) ; 12(3)2023 Mar 22.
Article in English | MEDLINE | ID: mdl-36979176

ABSTRACT

Farmers are currently facing the challenge of producing sufficient crop yield [...].

11.
Environ Pollut ; 320: 121077, 2023 Mar 01.
Article in English | MEDLINE | ID: mdl-36646409

ABSTRACT

Beryllium (Be) is a relatively rare element and occurs naturally in the Earth's crust, in coal, and in various minerals. Beryllium is used as an alloy with other metals in aerospace, electronics and mechanical industries. The major emission sources to the atmosphere are the combustion of coal and fossil fuels and the incineration of municipal solid waste. In soils and natural waters, the majority of Be is sorbed to soil particles and sediments. The majority of contamination occurs through atmospheric deposition of Be on aboveground plant parts. Beryllium and its compounds are toxic to humans and are grouped as carcinogens. The general public is exposed to Be through inhalation of air and the consumption of Be-contaminated food and drinking water. Immobilization of Be in soil and groundwater using organic and inorganic amendments reduces the bioavailability and mobility of Be, thereby limiting the transfer into the food chain. Mobilization of Be in soil using chelating agents facilitates their removal through soil washing and plant uptake. This review provides an overview of the current understanding of the sources, geochemistry, health hazards, remediation practices, and current regulatory mandates of Be contamination in complex environmental settings, including soil and aquatic ecosystems.


Subject(s)
Beryllium , Soil Pollutants , Humans , Ecosystem , Soil , Soil Pollutants/analysis , Risk Management , Coal
12.
Front Plant Sci ; 13: 956249, 2022.
Article in English | MEDLINE | ID: mdl-36452105

ABSTRACT

Environmental stresses, including heavy metals accumulation, have posed an immense threat to the agricultural ecosystem, leading to a reduction in the yield of crucial crops. In this study, we evaluated the role of quercetin (Qu) in the alleviation of chromium (Cr) stress in Fenugreek (Trigonella corniculata L.). Different levels of Qu were prepared during the experiment, i.e., 15, 25, and 40 µM. For Cr toxification in potted soil, potassium chromate (K2Cr2O7) was used. Cr toxification reduced growth of T. corniculata seedlings. Cr stress also reduced fiber, ash, moisture, carbohydrate, protein, fats, and flavonoid contents. However, seed priming with Qu improved growth and physiochemical characteristics of T. corniculata seedlings grown in normal and Cr-contaminated soil. Seed priming with Qu escalated intercellular CO2 concentration, stomatal conductance, transpiration rate, and photosynthetic rate in T. corniculata seedlings. Application of Qu also increased the activity of antioxidative enzymes, i.e., superoxide dismutase (SOD), catalase (CAT), ascorbate peroxidase (APX), and peroxidase (POD) in T. corniculata seedlings exposed to normal and Cr-contaminated soil. Application of Qu incremented the activity of SOD, POD, CAT, and APX, which were increased by 28, 22, 29, and 33%, respectively, in T. corniculata grown in Cr-toxic soil as compared to control treatment. Chromium stress alleviation was credited to the enhanced activity of the antioxidative defensive system in T. corniculata seedlings. It is proposed that Qu supplementation can be used to mitigate other abiotic stresses in plants.

13.
Front Plant Sci ; 13: 955406, 2022.
Article in English | MEDLINE | ID: mdl-36186012

ABSTRACT

Identification and validation of biomarkers and bioindicators to select genotypes with superior tolerance to water deficit (WD) under field conditions are paramount to plant breeding programs. However, the co-occurrence of different abiotic stresses such as WD, heat, and radiation makes it difficult to develop generalized protocols to monitor the physiological health of the plant system. The study assessed the most abundant carbohydrates and sugar alcohols in five faba bean (Vicia faba) genotypes under field conditions and the abundance of naturally occurring carbon isotopes in bulk leaf material to predict water use efficiency (WUE). Plant water status and biomass accumulation were also assessed. Among the accumulated sugars, inter-specific variation in glucose was most prevalent and was found at a higher concentration (8.52 mg g-1 leaf) in rainfed trial. myo-Inositol concentrations followed that of glucose accumulation in that the rainfed trial had higher amounts compared to the irrigated trial. WUE calculated from carbon isotope abundance was consistently offset with measured WUE from measurements of leaf gas exchange. All genotypes demonstrated significant relationships between predicted and measured WUE (p < 0.05) apart from control variety PBA Warda. Thus, bulk leaf-level carbon isotope abundance can be used to calculate WUE and used as an effective selection criterion for improving WUE in faba bean breeding programs under field conditions.

14.
Front Plant Sci ; 13: 825309, 2022.
Article in English | MEDLINE | ID: mdl-35574095

ABSTRACT

Winter wheat monoculture is a predominant cropping system for agricultural production in dry areas. However, fallow management effects on soil water conservation and crop yield and water use have been inconsistent among studies. We selected 137 studies and performed a meta-analysis to test the effects of tillage and mulching during the fallow period on precipitation storage efficiency (PSE), soil water storage at wheat planting (SWSp), crop yield, evapotranspiration (ET), and water use efficiency (WUE). Compared to conventional tillage (CT), conservation tillage during fallow period overall increased PSE, SWSp and wheat yield by 31.0, 6.4, and 7.9%, respectively, but did not affect ET and WUE. No tillage (NT) had a better performance on soil water conservation during fallow period but a similar effect on wheat yield and WUE compared to reduced tillage (RT) and subsoil tillage (ST). Compared to no mulching, fallow mulching practices overall increased PSE by 19.4%, but had a non-significant impact on SWSp, wheat yield, and ET. Compared to straw mulching, film mulching, and stubble mulching during fallow period, cover cropping as a biological mulching decreased SWSp, wheat yield, and WUE significantly. Wheat WUE was improved by straw mulching but not affected by film mulching and stubble mulching. Strong interactions between tillage method and mulching practices were found for most variables. NT with fallow mulching or with no mulching exhibited a greater impact on soil water conservation during fallow period compared to other combinations. The effects of tillage and mulching during fallow period on soil water conservation and wheat yield and water use also varied with soil and climatic conditions. Overall, NT in combination with straw mulching significantly increased SWSp, PSE, wheat yield, and WUE and can be the best fallow management practice for winter wheat production in varying edaphic and climatic conditions.

15.
J Exp Bot ; 73(17): 5886-5902, 2022 09 30.
Article in English | MEDLINE | ID: mdl-35640481

ABSTRACT

Melatonin is a highly conserved and ubiquitous molecule that operates upstream of a broad array of receptors in animal systems. Since melatonin was discovered in plants in 1995, hundreds of papers have been published revealing its role in plant growth, development, and adaptive responses to the environment. This paper summarizes the current state of knowledge of melatonin's involvement in regulating plant ion homeostasis and abiotic stress tolerance. The major topics covered here are: (i) melatonin's control of H+-ATPase activity and its implication for plant adaptive responses to various abiotic stresses; (ii) regulation of the reactive oxygen species (ROS)-Ca2+ hub by melatonin and its role in stress signaling; and (iii) melatonin's regulation of ionic homeostasis via hormonal cross-talk. We also show that the properties of the melatonin molecule allow its direct scavenging of ROS, thus preventing negative effects of ROS-induced activation of ion channels. The above 'desensitization' may play a critical role in preventing stress-induced K+ loss from the cytosol as well as maintaining basic levels of cytosolic Ca2+ required for optimal cell operation. Future studies should focus on revealing the molecular identity of transporters that could be directly regulated by melatonin and providing a bioinformatic analysis of evolutionary aspects of melatonin sensing and signaling.


Subject(s)
Melatonin , Adenosine Triphosphatases , Calcium , Homeostasis , Plants , Reactive Oxygen Species , Stress, Physiological
16.
Mol Biol Rep ; 49(6): 5437-5450, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35182321

ABSTRACT

MiRNAs modulate target genes expression at post-transcriptional levels, by reducing spatial abundance of mRNAs. MiRNAs regulats plant metabolism, and emerged as regulators of plant stress responses. Which make miRNAs promising candidates for fine tuning to affectively alter crop stress tolerance and other important traits. With recent advancements in the computational biology and biotechnology miRNAs structure and target prediction is possible resulting in pin point editing; miRNA modulation can be done by up or down regulating miRNAs using recently available biotechnological tools (CRISPR Cas9, TALENS and RNAi). In this review we have focused on miRNA biogenesis, miRNA roles in plant development, plant stress responses and roles in signaling pathways. Additionally we have discussed latest computational prediction models for miRNA to target gene interaction and biotechnological systems used recently for miRNA modulation. We have also highlighted setbacks and limitations in the way of miRNA modulation; providing entirely a new direction for improvement in plant genomics primarily focusing miRNAs.


Subject(s)
MicroRNAs , Biotechnology , Computational Biology/methods , Computer Simulation , MicroRNAs/genetics , Plants/genetics , Stress, Physiological/genetics
17.
Trends Plant Sci ; 27(9): 890-907, 2022 09.
Article in English | MEDLINE | ID: mdl-35165036

ABSTRACT

Gene editing using clustered regularly interspaced short palindromic repeat/CRISPR-associated proteins (CRISPR/Cas) has revolutionized biotechnology and provides genetic tools for medicine and life sciences. However, the application of this technology to miRNAs, with the function as negative gene regulators, has not been extensively reviewed in plants. Here, we summarize the evolution, biogenesis, and structure of miRNAs, as well as their interactions with mRNAs and computational models for predicting target genes. In addition, we review current advances in CRISPR/Cas for functional analysis and for modulating miRNA genes in plants. Extending our knowledge of miRNAs and their manipulation with CRISPR will provide fundamental understanding of the functions of plant miRNAs and facilitate more sustainable and publicly acceptable genetic engineering of crops.


Subject(s)
CRISPR-Cas Systems , MicroRNAs , CRISPR-Cas Systems/genetics , Crops, Agricultural/genetics , Evolution, Molecular , Gene Editing , MicroRNAs/genetics
18.
Front Plant Sci ; 12: 699085, 2021.
Article in English | MEDLINE | ID: mdl-34868101

ABSTRACT

High plant density is considered a proficient approach to increase maize production in countries with limited agricultural land; however, this creates a high risk of stem lodging and kernel abortion by reducing the ratio of biomass to the development of the stem and ear. Stem lodging and kernel abortion are major constraints in maize yield production for high plant density cropping; therefore, it is very important to overcome stem lodging and kernel abortion in maize. In this review, we discuss various morphophysiological and genetic characteristics of maize that may reduce the risk of stem lodging and kernel abortion, with a focus on carbohydrate metabolism and partitioning in maize. These characteristics illustrate a strong relationship between stem lodging resistance and kernel abortion. Previous studies have focused on targeting lignin and cellulose accumulation to improve lodging resistance. Nonetheless, a critical analysis of the literature showed that considering sugar metabolism and examining its effects on lodging resistance and kernel abortion in maize may provide considerable results to improve maize productivity. A constructive summary of management approaches that could be used to efficiently control the effects of stem lodging and kernel abortion is also included. The preferred management choice is based on the genotype of maize; nevertheless, various genetic and physiological approaches can control stem lodging and kernel abortion. However, plant growth regulators and nutrient application can also help reduce the risk for stem lodging and kernel abortion in maize.

19.
Plants (Basel) ; 10(11)2021 Nov 02.
Article in English | MEDLINE | ID: mdl-34834724

ABSTRACT

Water conditions directly affect plant growth and thus modify reproduction allocation. However, little is known about the transgenerational effects of water conditions on xerophytes. The desert annual Atriplex aucheri produces three types of seeds (A: dormant, ebracteate black seeds; B: dormant, bracteolate black seeds; C: non-dormant, bracteolate brown seeds) on a single plant. The aim of this study was to investigate the effects of low/high water treatment (thereafter progeny water treatment) on aboveground biomass, C:N stoichiometry, and offspring seed characteristics of A. aucheri grown from brown seeds whose mother plants were under low/high water treatment (thereafter maternal water treatment). Progeny water only affected shoot dry weight and seed allocation of type A. Under low progeny water treatment, plants from parents with low maternal water treatment had the lowest biomass. Maternal water did not significantly influence the C and N content, however high maternal water increased the C:N ratio. Maternal water treatment did not significantly affect seed number. However, plants under low maternal and progeny water treatments had the lowest weight for type B seeds. When progeny plants were under low water treatment, seed allocation of type A, type B, and total seed allocation of plants under high maternal water were significantly lower than those of plants under low maternal water. These results indicate that water conditions during the maternal generation can dramatically contribute to progeny seed variation, but the transgenerational effects depend on the water conditions of progeny plants.

20.
Environ Pollut ; 290: 118067, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34488156

ABSTRACT

With the ever-increasing demand for lithium (Li) for portable energy storage devices, there is a global concern associated with environmental contamination of Li, via the production, use, and disposal of Li-containing products, including mobile phones and mood-stabilizing drugs. While geogenic Li is sparingly soluble, Li added to soil is one of the most mobile cations in soil, which can leach to groundwater and reach surface water through runoff. Lithium is readily taken up by plants and has relatively high plant accumulation coefficient, albeit the underlying mechanisms have not been well described. Therefore, soil contamination with Li could reach the food chain due to its mobility in surface- and ground-waters and uptake into plants. High environmental Li levels adversely affect the health of humans, animals, and plants. Lithium toxicity can be considerably managed through various remediation approaches such as immobilization using clay-like amendments and/or chelate-enhanced phytoremediation. This review integrates fundamental aspects of Li distribution and behaviour in terrestrial and aquatic environments in an effort to efficiently remediate Li-contaminated ecosystems. As research to date has not provided a clear picture of how the increased production and disposal of Li-based products adversely impact human and ecosystem health, there is an urgent need for further studies on this field.


Subject(s)
Soil Pollutants , Animals , Biodegradation, Environmental , Ecosystem , Humans , Lithium/analysis , Risk Management , Soil , Soil Pollutants/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...