Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38865582

ABSTRACT

The development of new electromagnetic absorbing materials is the main strategy to address electromagnetic radiation. Once traditional electromagnetic wave-absorbing materials are prepared, it is difficult to dynamically change their electromagnetic wave-absorbing performance. Facing the complexity of the information age and the rapid development of modern radar, it is significant to develop intelligent modulation of electromagnetic wave-absorbing materials. Here, CNTs/VO2/ANF composite aerogels with dynamic frequency tunability and switchable absorption on/off were synthesized. Based on the phase change behavior of VO2, the degree of polarization and interfacial effects of multiple heterogeneous interfaces between VO2 and CNTs and aramid nanofibers (ANFs) were modulated at different temperatures. With the increase in temperature (from 25 to 200 °C), the maximum absorption frequency of the frequency tunable aerogel is modulated from 12.24 to 8.56 GHz in the X-band, and the absorption intensity remains stable. The maximum effective switching bandwidth (ΔEAB) of the wave-absorbing switchable aerogel is 3.70 GHz. This study provides insights into intelligent electromagnetic wave absorption performance and paves the way for temperature-driven application of intelligent modulation of electromagnetic absorbers.

2.
Chemistry ; 30(27): e202304100, 2024 May 14.
Article in English | MEDLINE | ID: mdl-38451027

ABSTRACT

Using computer-aided design (TCAD) simulation, the impact of the Fe doping profile, including concentration, decay rate, and depth of the doping region on current-collapse magnitude (▵CC) in 0.5-µm gated GaN-based high electron mobility transistors (HEMTs) is systematically investigated. Accurate simulation models are established and developed to facilitate the fabrication of electronics. It is elucidated that the intricate interplay between trapping and de-trapping of Fe-related traps at the gate-drain edge is responsible for current collapse. The concentration and decay rate of the doping region have a more significant impact on current collapse than the depth. Increased trap state density near two-dimensional electron gas (2DEG) channel caused by deep-level acceptors would boost ▵CC. However, a minor dynamic reduction in 2DEG density (nT) induces a relatively small ▵CC. By adjusting the concentration, decay rate, and depth of the doping region, ▵CC of GaN-based Radio Frequency (RF) HEMTs can be reduced by approximately 50.3 %. The optimized distribution of Fe doping discussed in this work helps to prepare GaN-based RF HEMTs with a limited current collapse effect.

3.
Environ Pollut ; 346: 123583, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38365081

ABSTRACT

Immobilizing organic pollutants by adsorption of biochar in farmland soil is a cost-effective remediation method for contaminated soil. As the adsorption capacity of biochar is limited, biodegradation of biochar-adsorbed organic pollutants was a potential way to regenerate biochars and maintain the adsorption performance of biochars to lower the cost. It could be affected by the biochar pyrolysis temperature, but was not evaluated yet. In this study, biodegradation of adsorbed phenanthrene on a series of biochars with pyrolysis temperatures from 150 to 700 °C by Sphingobium yanoikuyae B1 was investigated using batch experiments of biodegradation kinetics at 30 °C, to explore the role of biochar pyrolysis temperature on biodegradation of biochar-adsorbed organic compounds. It was observed that 37.5-47.9% of adsorbed phenanthrene on moderate temperature-pyrolyzed biochars produced at 400 and 500 °C were biodegraded, less than that on high temperature-pyrolyzed biochars produced at ≥600 °C (48.8-60.8%) and low temperature-pyrolyzed biochars produced at ≤300 °C (63.4-92.5%). Phenanthrene adsorbed largely on the low temperature-pyrolyzed biochars by partition mechanism and thus is easily desorbed to water for a dominated intracellular biodegradation. On the high temperature-pyrolyzed biochars, phenanthrene is adsorbed largely by pore-filling mechanism and thus less desorbed to water for intracellular biodegradation. However, high temperature-pyrolyzed biochars can promote microbes to produce siderophore, H2O2 and thus release extracellular •OH for a dominated degradation of adsorbed phenanthrene by Fenton-like reaction. With the increase of biochar pyrolysis temperature, desorption and consequently the intracellular biodegradation of adsorbed phenanthrene on biochars decreased, while the secretion of siderophore and H2O2 by microbes on biochars increased to produce more extracellular •OH for degradation by Fenton-like reaction. The results could provide deep insights into the role of biochar pyrolysis temperature on biodegradation of biochar-adsorbed organic compounds, and optimize the selection of biochar with higher adsorption performance and easier regeneration for soil remediation.


Subject(s)
Environmental Pollutants , Phenanthrenes , Temperature , Pyrolysis , Hydrogen Peroxide , Charcoal , Soil , Water , Siderophores , Adsorption
4.
Int J Biol Macromol ; 260(Pt 2): 129539, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38244737

ABSTRACT

5-Hydroxytryptamine (5-HT) and its derivative bufotenine, which possess important physiological functions, are the primary active components in the secretions of toad parotid and skin gland. However, the biosynthetic pathway of these substances remains unclear in toads. To characterize toad's Aromatic-L-amino-acid decarboxylase (AADC), the key enzyme in the predicted 5-HT derivatives biosynthetic pathway, the full-length cDNA of AADC from Bufo bufo gargarizans (BbgAADC) was cloned from the parotoid gland of B. bufo gargarizans. The recombinant BbgAADC exhibited optimal expression in E. coli BL21 (DE3) containing pCold-BbgAADC after induction for 16 h at 15 °C with 0.3 mM IPTG, resulting in substantial yields of soluble proteins. The enzymological properties of BbgAADC were assessed, and it was determined that the optimal reaction temperature was 37 °C, the optimal pH was 8.6, and the optimum molar ratio of pyridoxal-5'-phosphate (PLP) to BbgAADC was found to be 3.6:1. Additionally, high substrate specificity was observed, as BbgAADC could catalyze the production of 5-HT from 5-hydroxytryptophan (5-HTP) but not dopamine or tryptamine from levodopa or tryptophan, respectively. The Km of the recombinant protein BbgAADC was 0.2918 mM and the maximum reaction rate (Vmax) was 1.182 µM·min-1 when 5-HTP was used as substrate. The Kcat was 0.0545 min-1, and Kcat/Km was 0.1868 mM-1·min-1. To elucidate the mechanism of BbgAADC, molecular docking was performed with PLP and 5-HTP, or the external aldimine formed by 5-HTP and PLP. The results indicated that the active sites for BbgAADC to bind with PLP were K303, H192, N300, A148, F309, T246, A273, and T147. W71, Y79, F80, P81, T82, H192, T246, N300, H302, F309, and R477 served as catalytically active sites for the binding of BbgAADC to 5-HTP. Furthermore, R447, W71, S149, N300, A148, and T147 of BbgAADC were involved in the decarboxylation reaction of the aldimine formed by PLP and 5-HTP.


Subject(s)
5-Hydroxytryptophan , Bufo bufo , Animals , Bufo bufo/metabolism , 5-Hydroxytryptophan/genetics , 5-Hydroxytryptophan/metabolism , Serotonin/pharmacology , Escherichia coli/genetics , Escherichia coli/metabolism , Molecular Docking Simulation , Aromatic-L-Amino-Acid Decarboxylases/genetics , Aromatic-L-Amino-Acid Decarboxylases/metabolism , Bufonidae/metabolism , Cloning, Molecular
5.
Front Psychol ; 14: 1159022, 2023.
Article in English | MEDLINE | ID: mdl-37621932

ABSTRACT

Introduction: Outsourcing, one of the nonstandard employment forms, has been increasingly popular with a wide variety of industries and employers. However, much less is known about its consequences at the employee level, especially relative to standard-employed colleagues. Drawing on social categorization theory and the human resource architecture model, the study was to investigate how outsourced (vs. standard) employment form impacts employees' perceived insider status and then job performance, as well as the moderating role of job value status. Methods: To examine these effects, we collected two-wave and multi-source questionnaires from a sample of 147 outsourced employees, 279 standard employees, and their immediate supervisors. And interviews with 31 employees, their supervisors, and human resources personnel provided further support for our findings. Results: The results showed that relative to standard employees, outsourced employees were lower in perceived insider status and indirectly worse in job performance. Furthermore, both the comparative effects were stronger among core-status than peripheral-status employees. Discussion: Our study contributes to outsourcing and widely nonstandard employment literature, bringing the research focus from employers to outsourced employees' psychological and behavioral consequences. Also, we extended literature on the human resource architecture, through a deeper investigation on the issue of employment form-job value status (mis)matching as well as its impacts on employees.

6.
Environ Res ; 237(Pt 1): 116961, 2023 Nov 15.
Article in English | MEDLINE | ID: mdl-37619632

ABSTRACT

Fluoroquinolones (FQs), as the most commonly used antibiotics, are ubiquitous in the aquatic environment. The FQs' self-sensitization process could generate reactive oxygen species (ROS), which could react with other coexisting organic pollutants, impacting their transformation behaviors. However, the FQs' influences and mechanisms on the photochemical transformation of coexisting antibiotics are not yet revealed. In this study, we found ofloxacin (OFL) and norfloxacin (NOR), the two common FQs, can obviously accelerate chlortetracycline (CTC) photodegradation. In the presence of OFL and NOR (i.e., 10 µM), CTC photodegradation rate constants increased by 181.1% and 82.9%, respectively. With the help of electron paramagnetic resonance (EPR) and quenching experiments, this enhancement was attributed to aromatic ketone structure in FQs, which absorbed photons to generate ROS (i.e., 3OFL*, 3NOR*,1O2, and •OH). Notably, 3OFL* or 3NOR* was dominantly contributed to the enhanced CTC photodegradation, with the contribution ratios of 79.9% and 77.3% in CTC indirect photodegradation, respectively. Compared to CTC direct photodegradation, some new photodegradation products were detected in FQs solution, suggesting that 3OFL* or 3NOR* may oxide CTC through electron transfer. Moreover, the higher triple-excited state energy of OFL and NOR over DFT calculation implied that energy transfer from 3OFL* or 3NOR* to CTC was also theoretically feasible. Therefore, the presence of FQs could significantly accelerate the photodegradation of coexisting antibiotics mainly via electron or energy transfer of 3FQs*. The present study provided a new insight for accurately evaluating environmental behaviors and risks when multiple antibiotics coexist.

7.
Small ; 19(46): e2304536, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37475494

ABSTRACT

Oxygen-containing functional groups have high potential to excite polarization loss. The nature and mechanism of the polarization loss brought on by oxygen-containing functional groups, however, remain unclear. In this study, metal-organic framework precursors are in situ pyrolyzed to produce ultrathin carbon nanosheets (UCS) that are abundant in oxygen functional groups. By altering the pyrolysis temperature, the type and concentration of functional groups are altered to produce good microwave absorption capabilities. It is demonstrated that the main processes of electromagnetic loss are polarization caused by "field effects and induced effects" brought on by strongly polar ester functional groups. Moreover, links between various oxygen functional groups and structural flaws are established, and their respective contributions to polarization are sharply separated. The sample with the highest ester group content ultimately achieves an effective absorption bandwidth of 6.47 GHz at a pyrolysis temperature of 800°C. This research fills a theoretical hole in the frequently overlooked polarization mechanism in the microwave band by defining the key polarization parameters in chaotic multiple dipole systems and, in particular, redefining the significance of ester groups.

8.
ACS Appl Mater Interfaces ; 14(39): 44572-44580, 2022 Oct 05.
Article in English | MEDLINE | ID: mdl-36125906

ABSTRACT

Luminescent solar concentrators (LSCs) can be used as large-area sunlight collectors, which show great potential in the application of building-integrated photovoltaic areas. Achieving highly efficient LSCs requires the suppression of reabsorption losses while maintaining a high photoluminescence quantum yield (PLQY) and broad absorption. Perovskites as the superstar fluorophores have recently emerged as candidates for large-area LSCs. However, highly emissive perovskites with a large Stokes shift and broad absorption have not been obtained up to now. Here, we devised a facile synthetic route to obtain Mn-doped multiple quantum well (MQW) Br-based perovskites. The Br-based perovskite host ensures broad absorption. Efficient energy transfer from the exciton to the Mn dopant produces a large Stokes shift and high PLQY simultaneously. By further coating the perovskites with Al2O3, the stability and PLQY are greatly elevated. A large area of liquid LSC (40 cm × 40 cm × 0.5 cm) is fabricated, which possesses an internal quantum efficiency (ηint) of 47% and an optical conversion efficiency (ηopt) reaching 11 ± 1%, which shows the highest value for large-area LSCs.

9.
J Colloid Interface Sci ; 626: 123-135, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35780546

ABSTRACT

Magnetoelectric coupling is a key strategy to obtain high-performance microwave absorption materials. Especially for carbon matrix composites, the absorbing capacity can be optimized via the tuning of the graphitization degree and the content ratio of the magnetic and dielectric components. Based on this theory, a simple strategy, consisting of the solvothermal method and annealing in an inert atmosphere, is adopted in this study to combine CoNi magnetic alloys with graphitized carbon into micron-scale composite spherical particles. Additionally, special attention is paid to the correlation among the graphitization degree of carbon matrix, component proportion, and dielectric response ability, so as to achieve a flexible micromorphology design and a tunable microwave absorption performance. When the pyrolysis temperature is offset to the best of 700 â„ƒ, a broadband absorption of 6.61 GHz (reflection loss <  - 10 dB) is achieved at an ultrathin matching thickness of 1.9 mm. Adjusting the carbon content can further optimize the impedance matching and realize a high-intensity absorption with a reflection loss of - 72.7 dB. Our work proposes a useful strategy to realize the effective combination of the magnetic and dielectric loss mechanisms and boost the microwave absorption capacity toward achieving the desired broadband and a high-efficiency absorption performance.

10.
J Hazard Mater ; 439: 129625, 2022 10 05.
Article in English | MEDLINE | ID: mdl-35905607

ABSTRACT

Knowledge of microbial degradation of biochar-adsorbed organic pollutants is essential for recovering adsorption performance of biochars and reducing secondary pollution in soil remediation. In previous study, desorption of organic compounds from biochars was perceived as a prerequisite for the microbial degradation. However, microbial degradation of the nondesorbable organic compounds on biochars has not been studied. Therefore, degradation of nondesorbable naphthalene (NAPH), phenanthrene (PHEN) and pyrene (PYR) on a wood chip-derived biochar (WBC700) by Sphingobium yanoikuyae B1 was investigated. Significant microbial degradations of nondesorbable organic compounds were observed and followed the order of NAPH < PHEN < PYR. It was newly observed in this study that the microbial degradation of nondesorbable organic compounds on WBC700 was mainly attributed to the •OH in extracellular fluid of Sphingobium yanoikuyae B1. The extracellular •OH was produced through a Fenton-like reaction involved siderophore, H2O2 and iron ions, which could be significantly enhanced by WBC700. Microbial degradation was higher for larger organic compound (e.g., PYR), because larger molecules were adsorbed in relatively larger micropores of WBC700 and thus could be accessible to more extracellular •OH for degradation. The obtained results could provide a new insight into the microbial degradation of biochar-adsorbed organic pollutants in soil remediation.


Subject(s)
Soil Pollutants , Adsorption , Charcoal/chemistry , Hydrogen Peroxide , Organic Chemicals , Reactive Oxygen Species , Soil/chemistry , Soil Pollutants/analysis , Sphingomonadaceae
11.
Small Methods ; 6(9): e2200429, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35676230

ABSTRACT

Hollow metal-organic frameworks (MOFs) with careful phase engineering have been considered to be suitable candidates for high-performance microwave absorbents. However, there has been a lack of direct methods tailored to MOFs in this area. Here, a facile and safe Ni2+ -exchange strategy is proposed to synthesize graphite/CoNi alloy hollow porous composites from Ni2+ concentration-dependent etching of Zeolite imidazole frame-67 (ZIF-67) MOF and subsequent thermal field regulation. Such a special combination of hollow structure and carefully selected hybrid phase are with optimized impedance matching and electromagnetic attenuation. Especially, the suitable carrier transport model and the rich polarization site enhance the dielectric loss, while more significant hysteresis loss and more natural resonance increase the magnetic loss. As a result, excellent microwave absorbing (MA) performances of both broadband absorption (7.63 GHz) and high-efficiency loss (-63.79 dB) are obtained. Moreover, the applicability and practicability of the strategy are demonstrated. This work illustrates the unique advantages of ion-exchange strategy in structure design, component optimization, and electromagnetic regulation, providing a new reference for the 5G cause and MA field.

12.
iScience ; 25(1): 103598, 2022 Jan 21.
Article in English | MEDLINE | ID: mdl-35005545

ABSTRACT

Atomically thin two-dimensional (2D) metal oxides exhibit unique optical, electrical, magnetic, and chemical properties, rendering them a bright application prospect in high-performance smart devices. Given the large variety of both layered and non-layered 2D metal oxides, the controllable synthesis is the critical prerequisite for enabling the exploration of their great potentials. In this review, recent progress in the synthesis of 2D metal oxides is summarized and categorized. Particularly, a brief overview of categories and crystal structures of 2D metal oxides is firstly introduced, followed by a critical discussion of various synthesis methods regarding the growth mechanisms, advantages, and limitations. Finally, the existing challenges are presented to provide possible future research directions regarding the synthesis of 2D metal oxides. This work can provide useful guidance on developing innovative approaches for producing both 2D layered and non-layered nanostructures and assist with the acceleration of the research of 2D metal oxides.

13.
Biol Trace Elem Res ; 200(3): 1127-1139, 2022 Mar.
Article in English | MEDLINE | ID: mdl-33895963

ABSTRACT

Renal fibrosis is the final result of the progression of chronic kidney disease (CKD) to end-stage renal disease (ESRD). Earlier studies confirmed that selenium (Se) displays a close association with kidney diseases. However, the correlation between Se and fibrosis has rarely been explored. Thus, this article mainly aimed to investigate the effect of Se deficiency on renal fibrosis and the Wnt/ß-catenin signaling pathway. Twenty BALB/c mice were fed a diet containing 0.02-mg/kg Se (Se-deficient diet) or 0.18-mg/kg Se (standard diet) for 20 weeks. A human glomerular mesangial cell (HMC) cell line was transfected with lentiviral TRNAU1AP-shRNA vector to establish a stable Se deficiency model in vitro. As indicated in this study, the glutathione (GSH) content in the Se-deficient group displayed an obvious decline compared with that in the control group, whereas the content of malondialdehyde (MDA) was obviously elevated. The results of Masson staining showed fibrosis around the renal tubules, and the results of immunohistochemistry showed that the area of positive fibronectin expression increased. In the Se-deficient group, the levels of collagen I, collagen III, matrix metalloproteinase 9 (MMP9), and other fibrosis-related proteins changed significantly in vivo and in vitro. Compared with the control group, the TRNAU1AP-shRNA group showed markedly reduced cell proliferation and migration abilities. Our data indicate that Se deficiency can cause kidney damage and renal fibrosis. Furthermore, the Wnt pathway is critical for the development of tissue and organ fibrosis. The data of this study demonstrated that the expression of Wnt5a, ß-catenin, and dishevelled 1 (Dvl-1) was significantly upregulated in the Se-deficient group. Therefore, the Wnt/ß-catenin pathway may play an important role in renal fibrosis caused by Se deficiency.


Subject(s)
Renal Insufficiency, Chronic , Selenium , Wnt Signaling Pathway , Animals , Fibrosis , Kidney Tubules/pathology , Mice , Renal Insufficiency, Chronic/pathology , beta Catenin/metabolism
14.
J Colloid Interface Sci ; 608(Pt 2): 1202-1211, 2022 Feb 15.
Article in English | MEDLINE | ID: mdl-34735855

ABSTRACT

Doping Mn2+ into CsPbCl3 nanocrystals (NCs) yields strong orange emission, while the related emission in Mn2+ doped CsPbBr3 NCs is impaired seriously. This is mainly ascribed to back energy transfer from the Mn2+ dopant to the host. Doping Mn2+ into perovskites with multiple-quantum-well (MQW) structures may address this issue, where the energy funnels ensure a rapid energy transfer process, and thus resulting in a high photoluminescence quantum yield (PLQY). Here, we have developed an Ag+ assisted Mn2+ doping method in which Mn2+ can be easily doped into Br-based MQW perovskites. In this MQW perovskites, both nanoplatelets (NPLs) and NCs were formed simultaneously, where efficient energy transfer occurred from the NPLs with a higher energy bandgap to the NCs with a smaller energy bandgap, and then to the Mn2+ dopants. White lighting solution with a PLQY up to 98% has been acquired by altering the experimental parameters, such as reaction time and the Pb-to-Mn feed ratio. The successful doping of Mn2+ into CsPbBr3 host has great significance and shows promising application for next-generation white lighting.

15.
ACS Appl Mater Interfaces ; 13(47): 56348-56357, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34783239

ABSTRACT

Luminescent solar concentrators (LSCs) show great promise in reducing the cost of silicon solar cells due to their potential use for high-efficiency energy harvesting. Compared to narrow absorption organic dyes, quantum dots (QDs) are a favorable approach to acquire stable LSCs. However, the use of toxic heavy metals in QDs and the small Stokes shift largely restrict their development. Here, a toxic metal-free, highly luminescent ink based on a copper(I)-halide hybrid cluster is reported, whose quantum yield (QY) exceeds 68%. Under the interaction with halohydrocarbon, CuI and phenethylamine (PEA) can be easily dissolved and the ink can be facilely acquired. The obtained film exhibits strong orange light emission with a large Stokes shift. As a proof-of-concept experiment, (PEA)4Cu4I4 has been used to fabricate LSCs. The as-prepared LSC (4 cm × 4 cm × 0.3 cm) exhibits an internal quantum efficiency (ηint) as high as 44.1%. After coupling to a solar cell, an optical conversion efficiency (ηopt) of 6.85% is acquired from this LSC. In addition, the LSC possesses high stability such as air stability, water stability, and photostability. These results demonstrate that the (PEA)4Cu4I4 film can be employed as a promising candidate for large-area and high-efficiency LSCs.

16.
Nanoscale ; 13(30): 12896-12909, 2021 Aug 14.
Article in English | MEDLINE | ID: mdl-34477773

ABSTRACT

MOFs with high tunability are considered ideal candidates as microwave-absorbing materials. Strict experimental conditions can ensure the repeatability and maximize the potential of such materials. In this study, cubic ZIF-67 carbides synthesized at different solution temperatures showed an adjustable average size, and then by adjusting the calcination temperature we could control the degree of graphitization, so as to explore the synergistic effect of these two aspects to achieve an in-depth understanding of the electromagnetic properties and microwave absorption properties. The results showed that sample 30-600 (with the former number referring to the synthesis temperature and the latter to the calcination temperature) showed the widest effective absorption bandwidth (5.75 GHz, 1.8 mm) and the optimal reflection loss (-56.92 dB, 2.1 mm). The best matching electromagnetic parameters were obtained under the synergistic action of a smaller particle size and appropriate degree of graphitization, so as to achieve strong attenuation characteristics under low electromagnetic wave reflection. The microwave loss mechanism of the sample mainly involved dielectric losses, such as from conductance loss, dipole polarization, and interface polarization. Starting from the experimental details, this work proposes a dual control strategy for developing microwave-absorbing materials with both simplicity and practicability, which provides a useful reference for other microwave absorbents synthesized at room temperature.

17.
Nanoscale ; 13(27): 12038-12044, 2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34231633

ABSTRACT

Fingerprints form when fingers touch a solid surfaceand are considered the best way for individual identification. However, the current latent fingerprint (LFP) developing methods cannot meet the demand for high sensitivity and being convenient and healthy. Herein, bifunctional Fe3O4@SiO2-CsPbBr3 powders have been designed and fabricated and exhibit good magnetic and strong fluorescent properties. The magnetism of Fe3O4 can avoid dust flying, while the fluorescence of CsPbBr3 ensures the high definition of LFPs. Clear fingerprints have been detected on various solid substrates using the Fe3O4@SiO2-CsPbBr3 powders instead of eikonogen. Detailed characterization studies suggest that the ammonium cationic groups on the surface of nanoparticles (NPs) have strong adhesive interactions with the residues of fingerprints because of the electrostatic attraction between them. Therefore, the convenient operation and excellent resolution offer great opportunity in the practical application of fingerprint detection and other areas.

18.
Opt Lett ; 46(10): 2537-2540, 2021 May 15.
Article in English | MEDLINE | ID: mdl-33988629

ABSTRACT

In this Letter, we report the significant enhancement of the photonic spin Hall effect (SHE) in a plasmonic metasurface with ${\rm S}_4$ symmetry. We find that an enhanced SHE of reflected light can occur in both horizontally and vertically polarized incident beams, and the maximum transverse displacement can approach half of the beam waist. Such a large displacement is caused by the non-resonant and near-zero pseudo-Brewster angles in the plasmonic metasurface. Owing to ${\rm S}_4$ symmetry, a unidirectional SHE is obtained in the metasurface, i.e., large and tiny transverse displacements are realized for a linearly polarized beam incident from the opposite side. This Letter provides a new, to the best of our knowledge, way to achieve an enhanced photonic SHE and offers more opportunities for designing spin-based nanophotonic devices.

19.
Opt Express ; 29(2): 2874-2883, 2021 Jan 18.
Article in English | MEDLINE | ID: mdl-33726474

ABSTRACT

When waves are incident from a high-index medium to a low one, total reflection occurs commonly for the incidence beyond the critical angle. However, this common sense is broken by a purely imaginary metamaterial (PIM), which also supports a real refraction index yet with pure loss and gain elements in their permittivity and permeability. We find that even beyond the critical angle of a lower-index PIM slab, some extraordinary wave modes including laser, anti-laser, perfect attenuator and perfect amplifier can appear. The general conditions of these wave modes are theoretically given out and the underlying mechanisms are revealed. Also, we study the influence of incident polarizations, geometric thickness and the parameters of the PIM slab on these extraordinary wave modes, with more wave propagation behaviors discovered.

20.
Dalton Trans ; 50(8): 2766-2773, 2021 Feb 28.
Article in English | MEDLINE | ID: mdl-33543204

ABSTRACT

Metal halide perovskites have been extensively studied recently by virtue of their extraordinary luminescence characteristics. However, they still suffer from severe stability issues, and contain a toxic metal lead. Here, single crystals of (PEA)4Cu4I4, a lead-free orange-red-emitting organic-inorganic copper-halide compound with a photoluminescence quantum yield (PLQY) of 68%, were synthesized via a simple solvent vapor diffusion process with commercially-available phenylethylamine (PEA) as a ligand. The crystals show superior stability to perovskites with retaining 60% of their initial photoluminescence (PL) intensity after 60 days in water, which is due to the hydrophobic nature of PEA and the stable Cu-N bonds. Phase transition is found to take place upon lowering the temperature, which causes a redshift of the PL peak. The emission band is identified to be associated with triplet cluster-centered (CC) excited states because of their shortened Cu-Cu distances, excitation-independent PL and long PL lifetime. In addition, micron-sized oleic acid capped (PEA)4Cu4I4 particles were developed by a hot-injection method, and they possess similar stability to that of bulk crystals. A monochrome LED was further fabricated by employing the as-prepared micron-sized particles as phosphors, demonstrating their potential for optoelectronic applications.

SELECTION OF CITATIONS
SEARCH DETAIL
...