Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Nano ; 17(23): 24104-24114, 2023 Dec 12.
Article in English | MEDLINE | ID: mdl-37972379

ABSTRACT

The deposition/stripping behavior of lithium metal is intriguing, and the associated formation of inactive lithium at various temperatures remains elusive, which hinders the practical application of lithium metal batteries. Here, utilizing the variable-temperature operando solid-state nuclear magnetic resonance (SS NMR) technique, we reveal the temperature effects on the lithium microstructure evolution in a carbonate-based electrolyte system. In addition, the mass spectrometry titration (MST) method is used to quantify the evolution of inactive lithium components, including dead lithium, solid electrolyte interface (SEI), and lithium hydride (LiH). Combined SS NMR and MST results show that the morphology of lithium metal is reasonably correlated to the amount of inactive Li formed. At low/ambient temperature, the lithium microstructure has a similar evolution pattern, and its poor morphology leads to a large amount of dead lithium, which dominates capacity loss; however, at high temperature large and dense lithium deposits form with less dead Li detected, and the intensified electrolyte consumption in SEI formation is the major cause for capacity loss. Our phase-field simulation results reveal that the compact lithium deposition formed at higher temperature is due to the more uniformly distributed electric field and Li+ concentration. Lastly, two strategies in forming a dense Li deposit are proposed and tested that show performance-enhancing results.

2.
J Magn Reson ; 353: 107516, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37418780

ABSTRACT

In order to develop new electrode and electrolyte materials for advanced sodium-ion batteries (SIBs), it is crucial to understand a number of fundamental issues. These include the compositions of the bulk and interface, the structures of the materials used, and the electrochemical reactions in the batteries. Solid-state NMR (SS-NMR) has unique advantages in characterizing the local or microstructure of solid electrode/electrolyte materials and their interfaces-one such advantage is that these are determined in a noninvasive and nondestructive manner at the atomic level. In this review, we provide a survey of the recent advances in the understanding of the fundamental issues of SIBs using advanced NMR techniques. First, we summarize the applications of SS-NMR in characterizing electrode material structures and solid electrolyte interfaces (SEI). In particular, we elucidate the key role of in-situ NMR/MRI in revealing the complex reactions and degradation mechanisms of SIBs. Next, the characteristics and shortcomings of SS-NMR and MRI techniques in SIBs are also discussed in comparison to similar Li-ion batteries. Finally, an overview of SS-NMR and MRI techniques for sodium batteries are briefly discussed and presented.

3.
Nat Commun ; 14(1): 177, 2023 Jan 12.
Article in English | MEDLINE | ID: mdl-36635279

ABSTRACT

The formation of inactive lithium by side reactions with liquid electrolyte contributes to cell failure of lithium metal batteries. To inhibit the formation and growth of inactive lithium, further understanding of the formation mechanisms and composition of inactive lithium are needed. Here we study the impact of gas producing reactions on the formation of inactive lithium using ethylene carbonate as a case study. Ethylene carbonate is a common electrolyte component used with graphite-based anodes but is incompatible with Li metal anodes. Using mass spectrometry titrations combined with 13C and 2H isotopic labeling, we reveal that ethylene carbonate decomposition continuously releases ethylene gas, which further reacts with lithium metal to form the electrochemically inactive species LiH and Li2C2. In addition, phase-field simulations suggest the non-ionically conducting gaseous species could result in an uneven distribution of lithium ions, detrimentally enhancing the formation of dendrites and dead Li. By optimizing the electrolyte composition, we selectively suppress the formation of ethylene gas to limit the formation of LiH and Li2C2 for both Li metal and graphite-based anodes.

4.
Nat Commun ; 14(1): 259, 2023 Jan 17.
Article in English | MEDLINE | ID: mdl-36650152

ABSTRACT

The performance of all-solid-state lithium metal batteries (SSLMBs) is affected by the presence of electrochemically inactive (i.e., electronically and/or ionically disconnected) lithium metal and solid electrolyte interphase (SEI), which are jointly termed inactive lithium. However, the differentiation and quantification of inactive lithium during cycling are challenging, and their lack limits the fundamental understanding of SSLMBs failure mechanisms. To shed some light on these crucial aspects, here, we propose operando nuclear magnetic resonance (NMR) spectroscopy measurements for real-time quantification and evolution-tracking of inactive lithium formed in SSLMBs. In particular, we examine four different sulfide-based solid electrolytes, namely, Li10GeP2S12, Li9.54Si1.74P1.44S11.7Cl0.3, Li6PS5Cl and Li7P3S11. We found that the chemistry of the solid electrolyte influences the activity of lithium. Furthermore, we demonstrate that electronically disconnected lithium metal is mainly found in the interior of solid electrolytes, and ionically disconnected lithium metal is found at the negative electrode surface. Moreover, by monitoring the Li NMR signal during cell calendar ageing, we prove the faster corrosion rate of mossy/dendritic lithium than flat/homogeneous lithium in SSLMBs.

5.
Nano Lett ; 22(16): 6775-6781, 2022 Aug 24.
Article in English | MEDLINE | ID: mdl-35939759

ABSTRACT

Electrolyte optimization, such as using fluoride-bearing electrolytes, is regarded as an effective way to improve the cycle performance of lithium metal batteries (LMBs), but the promotion mechanisms of the electrolytes are in controversy due to the lack of quantitative understanding of the reaction products during cycling. Here, taking several fluorinated electrolytes as models, we use mass spectrometry titration (MST) and solid state nuclear magnetic resonance (NMR) techniques to quantify the evolution of dead Li metal, solid electrolyte interphases (SEI) and lithium hydride (LiH) during cycling. Our quantitative results clearly disclose that lithium difluoro(oxalato)borate (LiODFB) is able to inhibit the formation of SEI and LiH while fluoroethylene carbonate (FEC) mainly inhibits the formation of dead Li metal. Furthermore, we surprisingly observe a linear correlation between LiH and SEI formation, whereas the commonly mentioned lithium fluoride (LiF) shows a weak correlation with either dead Li metal or SEI. Guided by the clear failure mechanism, we can provide a reasonable explanation for the synergistic effect with the combination of LiODFB and FEC from a quantitative perspective. We believe that a quantitative insight of electrolytes on the failure mechanism of LMBs will guide us to explore the functional electrolytes to achieve the practical application of LMBs.

6.
Adv Mater ; 34(39): e2205560, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35962756

ABSTRACT

High room-temperature ionic conductivities, large Li+ -ion transference numbers, and good compatibility with both Li-metal anodes and high-voltage cathodes of the solid electrolytes are the essential requirements for practical solid-state lithium-metal batteries. Herein, a unique "superconcentrated ionogel-in-ceramic" (SIC) electrolyte prepared by an in situ thermally initiated radical polymerization is reported. Solid-state static 7 Li NMR and molecular dynamics simulation reveal the roles of ceramic in Li+ local environments and transport in the SIC electrolyte. The SIC electrolyte not only exhibits an ultrahigh ionic conductivity of 1.33 × 10-3 S cm-1 at 25 °C, but also a Li+ -ion transference number as high as 0.89, together with a low electronic conductivity of 3.14 × 10-10 S cm-1 and a wide electrochemical stability window of 5.5 V versus Li/Li+ . Applications of the SIC electrolyte in Li||LiNi0.5 Co0.2 Mn0.3 O2 and Li||LiFePO4 batteries further demonstrate the high rate and long cycle life. This study, therefore, provides a promising hybrid electrolyte for safe and high-energy lithium-metal batteries.

7.
ACS Appl Mater Interfaces ; 14(26): 30398-30409, 2022 Jul 06.
Article in English | MEDLINE | ID: mdl-35748137

ABSTRACT

Ni-rich materials have received widespread attention as one of the mainstream cathodes in high-energy-density lithium-ion batteries for electric vehicles. However, Ni-rich cathodes suffer from severe surface reconstruction in a high delithiation state, constraining their rate capabilities and life span. Herein, a novel P2-type NaxNi0.33Mn0.67O2 (NNMO) is rationally selected as the surficial modification layer for LiNi0.8Co0.1Mn0.1O2 (NCM811) cathode, which undergoes a spontaneous Na+-Li+ exchange reaction to form an O2-type LixNi0.33Mn0.67O2 (LNMO) layer revealed by combining X-ray diffraction and solid-state nuclear magnetic resonance techniques. Owing to the specific oxygen stacking sequence, O2-type LNMO significantly prevents the initial layered structure of NCM811 from transforming to the spinel or rock-salt phases during cycling, thus effectively maintaining the integral surficial structure and the Li+ diffusion channels of NCM811. Eventually, the NNMO@NCM811 electrode yields enhanced thermal stability, outstanding rate performance, and long cycling stability with 80% capacity retention after 294 cycles at 200 mA g-1, and its life span is further extended to 531 cycles while enhancing the mechanical stability of the bulk material.

8.
Sci Adv ; 7(46): eabj3423, 2021 Nov 12.
Article in English | MEDLINE | ID: mdl-34757793

ABSTRACT

Practical use of lithium (Li) metal for high­energy density lithium metal batteries has been prevented by the continuous formation of Li dendrites, electrochemically isolated Li metal, and the irreversible formation of solid electrolyte interphases (SEIs). Differentiating and quantifying these inactive Li species are key to understand the failure mode. Here, using operando nuclear magnetic resonance (NMR) spectroscopy together with ex situ titration gas chromatography (TGC) and mass spectrometry titration (MST) techniques, we established a solid foundation for quantifying the evolution of dead Li metal and SEI separately. The existence of LiH is identified, which causes deviation in the quantification results of dead Li metal obtained by these three techniques. The formation of inactive Li under various operating conditions has been studied quantitatively, which revealed a general "two-stage" failure process for the Li metal. The combined techniques presented here establish a benchmark to unravel the complex failure mechanism of Li metal.

9.
Sci Rep ; 7(1): 16442, 2017 11 27.
Article in English | MEDLINE | ID: mdl-29180641

ABSTRACT

Mycoplasma pneumoniae(MP) is a leading pathogen of respiratory infection, especially community-acquired pneumonia (CAP), in children worldwide. However, its diagnosis is frequently ineffective because bacterial culture and serology test are usually positive 1-2 weeks or more after the disease onset. To achieve a better detection efficiency, the single-walled carbon nanotubes(SWCNT) were coupled with the colloidal gold-monoclonal antibody immunochromatographic strips(CGIC). Interestingly, the SWCNT/CGIC assay allowed MP identification, with a detection limit of 1 × 102 copies/ml. Using referenced throat swabs of 97 MP and 40 non-MP cases, the assay yielded 72.2% sensitivity, 100.0% specificity, 100.0% positive predictive value (PPV), 59.7% negative predictive value (NPV). In summary, our assay was far more effective than any conventional methods for the diagnosis of acute MP. The ease of use, rapid and stability further enhance its feasibility for clinical use on-site.


Subject(s)
Immunoassay/methods , Mycoplasma pneumoniae/immunology , Nanotubes, Carbon/chemistry , Pneumonia, Mycoplasma/immunology , Pneumonia, Mycoplasma/microbiology , Adolescent , Antibodies/chemistry , Child , Child, Preschool , Female , Gold/chemistry , Humans , Male , Nanotubes, Carbon/ultrastructure , Predictive Value of Tests , Saliva , Sensitivity and Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...