Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Genes (Basel) ; 14(6)2023 06 19.
Article in English | MEDLINE | ID: mdl-37372469

ABSTRACT

Corethrodendron fruticosum is an endemic forage grasses in China with high ecological value. In this study, the complete chloroplast genome of C. fruticosum was sequenced using Illumina paired-end sequencing. The C. fruticosum chloroplast genome was 123,100 bp and comprised 105 genes, including 74 protein-coding genes, 4 rRNA-coding genes, and 27 tRNA-coding genes. The genome had a GC content of 34.53%, with 50 repetitive sequences and 63 simple repeat repetitive sequences that did not contain reverse repeats. The simple repeats included 45 single-nucleotide repeats, which accounted for the highest proportion and primarily comprised A/T repeats. A comparative analysis of C. fruticosum, C. multijugum, and four Hedysarum species revealed that the six genomes were highly conserved, with differentials primarily located in the conserved non-coding regions. Moreover, the accD and clpP genes in the coding regions exhibited high nucleotide variability. Accordingly, these genes may serve as molecular markers for the classification and phylogenetic analysis of Corethrodendron species. Phylogenetic analysis further revealed that C. fruticosum and C. multijugum appeared in different clades than the four Hedysarum species. The newly sequenced chloroplast genome provides further insights into the phylogenetic position of C. fruticosum, which is useful for the classification and identification of Corethrodendron.


Subject(s)
Fabaceae , Genome, Chloroplast , Phylogeny , Fabaceae/genetics , China
2.
Plants (Basel) ; 12(9)2023 May 04.
Article in English | MEDLINE | ID: mdl-37176935

ABSTRACT

Seed vigor is an important aspect of seed quality. High-vigor seeds show rapid and uniform germination and emerge well, especially under adverse environmental conditions. Here, we determined hydrotime model parameters by incubating seeds at different water potentials (0.0, -0.2, -0.4, -0.6, and -0.8 MPa) in the laboratory, for 12 seed lots of Chinese milk vetch (Astragalus sinicus) (CMV), a globally important legume used as forage, green manure, and a rotation crop. Pot experiments were conducted to investigate the seedling emergence performance of 12 CMV seed lots under control, water stress, salinity stress, deep sowing, and cold stress conditions. Meanwhile, the field emergence performance was evaluated on two sowing dates in June and October 2022. Correlation and regression analyses were implemented to explore the relationships between hydrotime model parameters and seedling emergence performance under various environmental conditions. The seed germination percentage did not differ significantly between seed lots when seeds were incubated at 0.0 MPa, whereas it did differ significantly between seed lots at water potentials of -0.2, -0.4, and -0.6 MPa. The emergence percentage, seedling dry weight, and simplified vigor index also differed significantly between the 12 seed lots under various environmental conditions. Ψb(50) showed a significant correlation with germination and emergence performance under various environmental conditions; however, little correlation was observed between θH or σφb and germination and emergence. These results indicate that Ψb(50) can be used to estimate seed vigor and predict seedling emergence performance under diverse environmental conditions for CMV and similar forage legumes. This study will enable seed researchers, plant breeders, and government program directors to target higher seed vigor more effectively for forage legumes.

3.
PLoS One ; 17(10): e0276176, 2022.
Article in English | MEDLINE | ID: mdl-36251670

ABSTRACT

Chenopodium album L. is a troublesome annual species in various cropping systems, and a sound knowledge of the ecological response of C. album germination to environmental factors would suggest suitable management strategies for inhibiting its spread. Preliminary laboratory-based research was conducted to investigate germination and emergence requirements of C. album under various environmental conditions (e.g., photoperiods, constant temperature, salinity, moisture, soil pH, burial depth, and oat crop residue). Results showed C. album seeds were found to be photoblastic, with only 13% germination in darkness. The maximum germination (94%) of C. album occurred at an optimal temperature of 25°C, and the depressive effect of other temperatures on germination was more severe at lower rather than higher temperatures. Seed germination was suitably tolerant of salinity and osmotic potential, with germination observed at 200 mM NaCl (37.0%) and -0.8 MPa (20%), respectively. Germination was relatively uniform (88-92%) at pH levels ranging from 4 to 10. The maximum germination of C. album was observed on the soil surface, with no or rare emergence of seeds at a burial depth of 2 cm or under 7000 kg ha-1 oat straw cover, respectively. Information provided by this study will help to develop more sustainable and effective integrated weed management strategies for the control of C. album, including (i) a shallow-tillage procedures to bury weed seeds in conventional-tillage systems and (ii) oat residue retention or coverage on the soil surface in no-tillage systems.


Subject(s)
Chenopodium album , Germination , Seeds/physiology , Sodium Chloride/pharmacology , Soil/chemistry , Temperature , Weed Control/methods
4.
Plants (Basel) ; 11(13)2022 Jun 25.
Article in English | MEDLINE | ID: mdl-35807640

ABSTRACT

To understand how light intensity influences plant morphology and photosynthesis in the forage crop alfalfa (Medicago sativa L. cv. Zhongmu 1), we investigated changes in leaf angle orientation, chlorophyll fluorescence, parameters of photosynthesis and expression of genes related to enzymes involved in photosynthesis, the Calvin cycle and carbon metabolism in alfalfa seedlings exposed to five light intensities (100, 200, 300, 400 and 500 µmol m-2 s-1) under hydroponic conditions. Seedlings grown under low light intensities had significantly increased plant height, leaf hyponasty, specific leaf area, photosynthetic pigments, leaf nitrogen content and maximal PSII quantum yield, but the increased light-capturing capacity generated a carbon resource cost (e.g., decreased carbohydrates and biomass accumulation). Increased light intensity significantly improved leaf orientation toward the sun and upregulated the genes for Calvin cycle enzymes, thereby increasing photosynthetic capacity. Furthermore, high light (400 and 500 µmol m-2 s-1) significantly enhanced carbohydrate accumulation, accompanied by gene upregulation and increased activity of sucrose and starch-synthesis-related enzymes and those involved in carbon metabolism. Together, these results advance our understanding of morphological and physiological regulation in shade avoidance in alfalfa, which would guide the identification of suitable spatial planting patterns in the agricultural system.

5.
Plant Physiol Biochem ; 170: 49-63, 2022 Jan 01.
Article in English | MEDLINE | ID: mdl-34847401

ABSTRACT

Understanding the mechanisms underlying the responses to inorganic phosphate (Pi) deficiency in alfalfa will help enhance Pi acquisition efficiency and the sustainable use of phosphorous resources. Integrated global metabolomic and transcriptomic analyses of mid-vegetative alfalfa seedlings under 12-day Pi deficiency were conducted. Limited seedling growth were found, including 13.24%, 16.85% and 33.36% decreases in height, root length and photosynthesis, and a 24.10% increase in root-to-shoot ratio on day 12. A total of 322 and 448 differentially abundant metabolites and 1199 and 1061 differentially expressed genes were identified in roots and shoots. Increased (>3.68-fold) inorganic phosphate transporter 1;4 and SPX proteins levels in the roots (>2.15-fold) and shoots (>2.50-fold) were related to Pi absorption and translocation. The levels of phospholipids and Pi-binding carbohydrates and nucleosides were decreased, while those of phosphatases and pyrophosphatases in whole seedlings were induced under reduced Pi. In addition, nitrogen assimilation was affected by inhibiting high-affinity nitrate transporters (NRT2.1 and NRT3.1), and nitrate reductase. Increased delphinidin-3-glucoside might contribute to the gray-green leaves induced by Pi limitation. Stress-induced MYB, WRKY and ERF transcription factors were identified. The responses of alfalfa to Pi deficiency were summarized as local systemic signaling pathways, including root growth, stress-related responses consisting of enzymatic and nonenzymatic systems, and hormone signaling and systemic signaling pathways including Pi recycling and Pi sensing in the whole plant, as well as Pi recovery, and nitrate and metal absorption in the roots. This study provides important information on the molecular mechanism of the response to Pi deficiency in alfalfa.


Subject(s)
Medicago sativa , Transcriptome , Gene Expression Regulation, Plant , Medicago sativa/genetics , Medicago sativa/metabolism , Metabolome , Nitrate Transporters , Phosphates/metabolism , Plant Roots/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...