Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Exp Dermatol ; 33(7): e15142, 2024 Jul.
Article in English | MEDLINE | ID: mdl-39032085

ABSTRACT

Frequent itching and incessant scratching are commonly observed in various chronic inflammatory skin conditions, including atopic dermatitis and psoriasis. The persistent and prolonged nature of pruritus can worsen one's quality of life. Keratinocytes (KCs), the predominant cells of the epidermis, have been confirmed to interact with sensory neurons and immune cells and be involved in chronic skin inflammatory diseases associated with pruritus. Initially, KCs and sensory neurons form a unique synapse-like connection within the epidermis, serving as the structural foundation for their interaction. Additionally, several receptors, including toll-like receptors and protease-activated receptor 2, expressed on KCs, become activated in an inflammatory milieu. On the one hand, activated KCs are sources of pro-inflammatory cytokines and neurotrophic factors, such as adenosine triphosphate, thymic stromal lymphopoietin, and nerve growth factor, which directly or indirectly participate in stimulating sensory neurons, thereby contributing to the itch sensations. On the other hand, KCs also function as primary transducers alongside intraepidermal nerve endings, directly initiating pruritic responses. This review summarizes the current literature and highlights the critical role of KCs in the development and persistence of chronic itch in inflammatory skin disorders.


Subject(s)
Keratinocytes , Pruritus , Humans , Pruritus/etiology , Pruritus/physiopathology , Keratinocytes/metabolism , Chronic Disease , Sensory Receptor Cells/metabolism , Sensory Receptor Cells/physiology , Dermatitis, Atopic/complications , Animals , Cytokines/metabolism , Psoriasis/complications
2.
Cell Commun Signal ; 22(1): 108, 2024 02 12.
Article in English | MEDLINE | ID: mdl-38347543

ABSTRACT

Psoriasis is an immune-mediated inflammatory skin disease, involving a complex interplay between genetic and environmental factors. Previous studies have demonstrated that genetic factors play a major role in the pathogenesis of psoriasis. However, non-genetic factors are also necessary to trigger the onset and recurrence of psoriasis in genetically predisposed individuals, which include infections, microbiota dysbiosis of the skin and gut, dysregulated lipid metabolism, dysregulated sex hormones, and mental illness. Psoriasis can also be induced by other environmental triggers, such as skin trauma, unhealthy lifestyles, and medications. Understanding how these triggers play a role in the onset and recurrence of psoriasis provides insights into psoriasis pathogenesis, as well as better clinical administration. In this review, we summarize the triggers for the onset and recurrence of psoriasis and update the current evidence on the underlying mechanism of how these factors elicit the disease. Video Abstract.


Subject(s)
Microbiota , Psoriasis , Humans , Psoriasis/genetics , Skin/pathology
3.
iScience ; 26(9): 107485, 2023 Sep 15.
Article in English | MEDLINE | ID: mdl-37636055

ABSTRACT

Smart wearable sensors are electronic devices worn on the body that collect, process, and transmit various physiological data. Compared to traditional devices, their advantages in terms of portability and comfort have made them increasingly important in the medical field. This review takes a unique clinical physician's standpoint, diverging from conventional sensor-type-based classifications, and provides a comprehensive overview of the diverse clinical applications of wearable sensors in recent years. In this review, we categorize these applications according to different diseases, encompassing skin diseases and injuries, cardiovascular diseases, abnormal human motion, as well as endocrine and metabolic disorders. Additionally, we discuss the challenges and perspectives hindering the development of sensors for clinical use, emphasizing the critical need for interdisciplinary collaboration between medical and engineering professionals. Overall, this review would serve as an important reference for the future direction of sensor devices in clinical use.

SELECTION OF CITATIONS
SEARCH DETAIL