Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; 15(38): e1903121, 2019 09.
Article in English | MEDLINE | ID: mdl-31379108

ABSTRACT

The combination of diagnostic and therapeutic functions in a single theranostic nanoagent generally requires the integration of multi-ingredients. Herein, a cytotoxic near-infrared (NIR) dye (IR-797) and its nanoassembly are reported for multifunctional cancer theranostics. The hydrophobic IR-797 molecules are self-assembled into nanoparticles, which are further modified with an amphiphilic polymer (C18PMH-PEG5000) on the surface. The prepared PEG-IR-797 nanoparticles (PEG-IR-797 NPs) possess inherent cytotoxicity from the IR-797 dye and work as a chemotherapeutic drug which induces apoptosis of cancer cells. The IR-797 NPs are found to have an ultrahigh mass extinction coefficient (444.3 L g-1 cm-1 at 797 nm and 385.9 L g-1 cm-1 at 808 nm) beyond all reported organic nanomaterials (<40 L g-1 cm-1 ) for superior photothermal therapy (PTT). In addition, IR-797 shows some aggregation-induced-emission (AIE) properties. Combining the merits of good NIR absorption, high photothermal energy conversion efficiency, and AIE, makes the PEG-IR-797 NPs useful for multimodal NIR AIE fluorescence, photoacoustic, and thermal imaging-guided therapy. The research exhibits the possibility of using a single ingredient and entity to perform multimodal NIR fluorescence, photoacoustic, and thermal imaging-guided chemo-/photothermal combination therapy, which may trigger wide interest from the fields of nanomedicine and medicinal chemistry to explore multifunctional theranostic organic molecules.


Subject(s)
Antineoplastic Agents/chemistry , Theranostic Nanomedicine/methods , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Drug Delivery Systems/methods , Photoacoustic Techniques/methods , Photochemotherapy/methods , Polymers/chemistry
2.
ACS Appl Mater Interfaces ; 11(32): 29086-29093, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31329407

ABSTRACT

Development of red thermally activated delayed fluorescence (TADF) emitters has been lagging behind when compared with those of blue and green fluorophores, especially for solution-processable ones. In this work, two novel orange-red TADF emitters 3,6-di(10H-phenoxazin-10-yl)dibenzo[a,c]phenazine (DBPZ-DPXZ) and 10,10'-(11,12-bis(3,5-di-tert-butylphenyl)dibenzo[a,c]phenazine-3,6-diyl)bis(10H-phenoxazine) (tDBBPZ-DPXZ) are developed. A high-performance orange-red TADF emitter, DBPZ-DPXZ, is first prepared by connecting a rigid acceptor and two rigid donor segments. While this design strategy endows DBPZ-DPXZ with an excellent TADF performance leading to a vacuum-processed organic light-emitting diode (OLED) with a high external quantum efficiency (EQE) of 17.8%, the rigid segments limit its solubility and applications in solution-processed devices. Based on this prototype, tDBBPZ-DPXZ is designed with the addition of 3,5-di-tert-butylphenyl groups to boost its solubility with barely an influence on the photophysical properties. In particular, tDBBPZ-DPXZ maintains nearly an identical photoluminescence quantum yield of 83% and singlet-triplet energy splitting of 0.03 eV with EQE of 17.0% in a vacuum-processed orange-red OLED. Furthermore, it can be applied on the orange-red solution-processed OLED realizing an EQE as high as 10.1%, representing one of the state-of-the-art results of the reported orange-red solution-processed TADF-OLEDs. This work provides an effective strategy to address the conflicting requirements between high efficiency and good solubility and develop efficient soluble orange-red TADF emitters.

3.
Angew Chem Int Ed Engl ; 58(41): 14660-14665, 2019 Oct 07.
Article in English | MEDLINE | ID: mdl-31313424

ABSTRACT

Developing red thermally activated delayed fluorescence (TADF) emitters, attainable for both high-efficient red organic light-emitting diodes (OLEDs) and non-doped deep red/near-infrared (NIR) OLEDs, is challenging. Now, two red emitters, BPPZ-PXZ and mDPBPZ-PXZ, with twisted donor-acceptor structures were designed and synthesized to study molecular design strategies of high-efficiency red TADF emitters. BPPZ-PXZ employs the strictest molecular restrictions to suppress energy loss and realizes red emission with a photoluminescence quantum yield (ΦPL ) of 100±0.8 % and external quantum efficiency (EQE) of 25.2 % in a doped OLED. Its non-doped OLED has an EQE of 2.5 % owing to unavoidable intermolecular π-π interactions. mDPBPZ-PXZ releases two pyridine substituents from its fused acceptor moiety. Although mDPBPZ-PXZ realizes a lower EQE of 21.7 % in the doped OLED, its non-doped device shows a superior EQE of 5.2 % with a deep red/NIR emission at peak of 680 nm.

4.
Chem Sci ; 11(3): 888-895, 2019 Dec 11.
Article in English | MEDLINE | ID: mdl-34123067

ABSTRACT

Rational manipulation of energy utilization from excited-state radiation of theranostic agents with a donor-acceptor structure is relatively unexplored. Herein, we present an effective strategy to tune the exciton dynamics of radiative excited state decay for augmenting two-photon nanotheranostics. As a proof of concept, two thermally activated delayed fluorescence (TADF) molecules with different electron-donating segments are engineered, which possess donor-acceptor structures and strong emissions in the deep-red region with aggregation-induced emission characteristics. Molecular simulations demonstrate that change of the electron-donating sections could effectively regulate the singlet-triplet energy gap and oscillator strength, which promises efficient energy flow. A two-photon laser with great permeability is used to excite TADF NPs to perform as theranostic agents with singlet oxygen generation and fluorescence imaging. These unique performances enable the proposed TADF emitters to exhibit tailored balances between two-photon singlet oxygen generation and fluorescence emission. This result demonstrates that TADF emitters can be rationally designed as superior candidates for nanotheranostic agents by the custom controlling exciton dynamics.

5.
Adv Sci (Weinh) ; 5(9): 1800436, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30250791

ABSTRACT

A novel thermally activated delayed fluorescence (TADF) emitter 12,15-di(10H-phenoxazin-10-yl)dibenzo[a,c]dipyrido[3,2-h:2',3'-j]phenazine (DPXZ-BPPZ) is developed for a highly efficient red organic light-emitting diode (OLED). With rigid and planar constituent groups and evident steric hindrance between electron-donor (D) and electron-acceptor (A) segments, DPXZ-BPPZ realizes extremely high rigidity to suppress the internal conversion process. Meanwhile, the highly twisted structure between D and A segments will also lead to an extremely small singlet-triplet energy split to DPXZ-BPPZ. Therefore, DPXZ-BPPZ successfully realizes an efficient fluorescent radiation transition and reverse intersystem crossing process, and possesses an extremely high photoluminescence quantum efficiency of 97.1 ± 1.1% under oxygen-free conditions. The OLED based on DPXZ-BPPZ shows red emission with a peak at 612 nm and a Commission Internationale de L'Eclairage (CIE) coordinate of (0.60, 0.40), and it achieves high maximum forward-viewing efficiencies of 20.1 ± 0.2% (external quantum efficiency), 30.2 ± 0.6 cd A-1 (current efficiency), and 30.9 ± 1.3 lm W-1 (power efficiency). The prepared OLED has the best performance among the reported red TADF OLEDs. These results prove that DPXZ-BPPZ is an ideal candidate for red TADF emitters, and the designing approach is valuable for highly efficient red TADF emitters.

SELECTION OF CITATIONS
SEARCH DETAIL
...