Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
mBio ; 14(4): e0132023, 2023 08 31.
Article in English | MEDLINE | ID: mdl-37462360

ABSTRACT

Heme, an essential molecule for virtually all living organisms, acts primarily as a cofactor in a large number of proteins. However, how heme is mobilized from the site of synthesis to the locations where hemoproteins are assembled remains largely unknown in cells, especially bacterial ones. In this study, with Shewanella oneidensis as the model, we identified HtpA (SO0126) as a heme-trafficking protein and homolog of TANGO2 proteins found in eukaryotes. We showed that HtpA homologs are widely distributed in all domains of living organisms and have undergone parallel evolution. In its absence, the cytochrome (cyt) c content and catalase activity decreased significantly. We further showed that both HtpA and representative TANGO2 proteins bind heme with 1:1 stoichiometry and a relatively low dissociation constant. Protein interaction analyses substantiated that HtpA directly interacts with the cytochrome c maturation system. Our findings shed light on cross-membrane transport of heme in bacteria and extend the understanding of TANGO2 proteins. IMPORTANCE The intracellular trafficking of heme, an essential cofactor for hemoproteins, remains underexplored even in eukaryotes, let alone bacteria. Here we developed a high-throughput method by which HtpA, a homolog of eukaryotic TANGO2 proteins, was identified to be a heme-binding protein that enhances cytochrome c biosynthesis and catalase activity in Shewanella oneidensis. HtpA interacts with the cytochrome c biosynthesis system directly, supporting that this protein, like TANGO2, functions in intracellular heme trafficking. HtpA homologs are widely distributed, but a large majority of them were found to be non-exchangeable, likely a result of parallel evolution. By substantiating the heme-trafficking nature of HtpA and its eukaryotic homologs, our findings provide general insight into the heme-trafficking process and highlight the functional conservation along evolution in all living organisms.


Subject(s)
Hemeproteins , Shewanella , Cytochromes c/metabolism , Heme/metabolism , Catalase/metabolism , Shewanella/genetics , Shewanella/metabolism , Hemeproteins/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism
2.
J Basic Microbiol ; 63(5): 489-498, 2023 May.
Article in English | MEDLINE | ID: mdl-36356225

ABSTRACT

Dengue is an acute arboviral infection common in tropical and subtropical countries. Dengue has been highlighted as a public health concern in the last five decades, affecting almost 50% of the population in developing nations. Dengue infection results in a complex symptomatic disease that ranges from headache, fever, and skin rash to extreme hemorrhage fever and liver dysfunction. The diagnosis of the disease is essential for effective treatment. The early onset of the infection can be detected through viral structural peptides that act as markers for detection, including Pre-Membrane (Pre-M) protein. In the currently proposed research, the structural gene obtained from local isolates was targeted for studies. For this purpose, recombinant structural protein Pre-M was amplified, cloned, and expressed in the bacterial expression system. The expression of the structural protein (Pre-M) was scrutinized by Sodium Dodecyl Sulphate-Polyacrylamide Gel Electrophoresis (SDS-PAGE) and validated by western blot and dot blot, and afterwards, the antigen was purified. The purified Pre-M protein carries the potential for the development of in-house diagnostic assay as well as for vaccine production. This study aimed to develop a highly specific, sensitive, and cost-effective in-house enzyme-linked immunoassay (ELISA) for the detection of antibodies of Pakistani most prevalent dengue virus serotype 2 (DENV-2). The success of this research would also pave the way toward developing novel vaccines for the future prevention of dengue infection.


Subject(s)
Dengue Virus , Dengue , Humans , Dengue Virus/genetics , Dengue/diagnosis , Dengue/prevention & control , Serogroup , Antibodies, Viral/genetics , Recombinant Proteins/genetics , Enzyme-Linked Immunosorbent Assay/methods
3.
J Sep Sci ; 45(23): 4318-4326, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36168868

ABSTRACT

Molecular imprinting is a promising strategy to selectively adsorb viruses, but it requires discerning and validating epitopes that serve as effective imprinting templates. In this work, glycoprotein-imprinted particles were synthesized for coronavirus capture. Adsorption was maximized at pH 6 (the glycoprotein isoelectric point) where the glycoprotein-imprinted particles outperformed non-imprinted particles, adsorbing 4.96 × 106  ± 3.33 × 103 versus 3.54 × 106  ± 1.39 × 106 median tissue culture infectious dose/mg of the target coronavirus, human coronavirus - organ culture 43, within the first 30 min (p = 0.012). During competitive adsorption, with pH adjustment (pH 6), the glycoprotein-imprinted particles adsorbed more target virus than non-target coronavirus (human coronavirus - Netherland 63) with 2.34 versus 1.94 log removal in 90 min (p < 0.01). In contrast, the non-imprinted particles showed no significant difference in target versus non-target virus removal. Electrostatic potential calculation shows that the human coronavirus - organ culture 43 glycoprotein has positively charged pockets at pH 6, which may facilitate adsorption at lower pH values. Therefore, tuning the target virus glycoprotein charge via pH adjustment enhanced adsorption by minimizing repulsive electrostatic interactions with the particles. Overall, these results highlight the effective use of glycoprotein-imprinted particles for coronavirus capture and discern the merits and limitations of glycoprotein imprinting for the capture of enveloped viruses.


Subject(s)
Coronavirus , Humans , Glycoproteins
4.
J Virol ; 96(19): e0134422, 2022 10 12.
Article in English | MEDLINE | ID: mdl-36125302

ABSTRACT

Subtype H7 avian influenza A viruses (IAVs) are enzootic in wild aquatic birds and have caused sporadic spillovers into domestic poultry and humans. Here, we determined the distribution of fucosylated α2,3 sialoglycan (i.e., sialyl Lewis X [SLeX]) in chickens and five common dabbling duck species and the association between SLeX and cell/tissue/host tropisms of H7 IAVs. Receptor binding analyses showed that H7 IAVs bind to both α2,3-linked (SA2,3Gal) and α2,6-linked sialic acids (SA2,6Gal), but with a higher preference for SLeX; H7 IAVs replicated more efficiently in SLeX-overexpressed than SLeX-deficient MDCK cells. While chickens and all tested dabbling ducks expressed abundant SA2,3Gal and SA2,6Gal, SLeX was detected in both respiratory and gastrointestinal tissues of chickens and mallard ducks and in only the respiratory tissues of gadwall, green-wing teal, and northern shoveler but not in wood ducks. Viral-tissue binding assays showed that H7 IAVs bind to chicken colon crypt cells that express SLeX but fewer bind to mallard colon crypt cells, which do not express SLeX; H7 IAVs bind efficiently to epithelial cells of all tissues expressing SA2,3Gal. High viral replication was identified in both chickens and mallards infected with an H7 virus, regardless of SLeX expression, and viruses were detected in all cells to the same degree as viruses detected in the viral-tissue binding assays. In summary, this study suggests that SLeX facilitates infection of H7 viruses, but other types of SA2,3Gal glycan receptors shape the tissue/host tropisms of H7 IAVs. IMPORTANCE In addition to causing outbreaks in domestic poultry, subtype H7 IAVs can cause sporadic spillover infections in lower mammals and humans. In this study, we showed that SLeX expression varies among wild dabbling ducks. Although it facilitated virus binding and affected infection of H7 IAV in cells, SLeX expression is not the only determinant of viral replication at either the tissue or host level. This study suggested that access to heterologous SA2,3Gal glycan receptors, including fucosylated α2,3-linked sialoglycans, shape tissue and host tropism of H7 IAVs in aquatic wild birds.


Subject(s)
Influenza A virus , Influenza in Birds , Sialyl Lewis X Antigen , Viral Tropism , Animals , Animals, Wild/virology , Chickens/virology , Dogs , Ducks/virology , Influenza A virus/pathogenicity , Influenza A virus/physiology , Madin Darby Canine Kidney Cells , Polysaccharides , Sialic Acids , Sialyl Lewis X Antigen/metabolism
5.
mBio ; 13(1): e0349721, 2022 02 22.
Article in English | MEDLINE | ID: mdl-35073744

ABSTRACT

LysR-type transcriptional regulators (LTTRs), which function in diverse biological processes in prokaryotes, are composed of a conserved structure with an N-terminal DNA-binding domain (DBD) and a C-terminal signal-sensing regulatory domain (RD). LTTRs that sense and respond to the same signal are often functionally exchangeable in bacterial species across wide phyla, but this phenomenon has not been demonstrated for the H2O2-sensing and -responding OxyRs. Here, we systematically examined the biochemical and structural determinants differentiating activator-only OxyRs from dual-activity ones by comparing OxyRs from two Gammaproteobacteria, Escherichia coli and Shewanella oneidensis. Our data show that EcOxyR could function as neither an activator nor a repressor in S. oneidensis. Using SoOxyR-based OxyR chimeras and mutants, we demonstrated that residues 283 to 289, which form the first half of the last C-terminal α-helix (α10), are critical for the proper function of SoOxyR and cannot be replaced with the EcOxyR counterpart. Crystal structural analysis reveals that α10 is important for the oligomerization of SoOxyR, which, unlike EcOxyR, forms several high-order oligomers upon DNA binding. As the mechanisms of OxyR oligomerization vary substantially among bacterial species, our findings underscore the importance of subtle structural features in determining regulatory activities of structurally similar proteins descending from a common ancestor. IMPORTANCE Evolution may drive homologous proteins to be functionally nonexchangeable in different organisms. However, much is unknown about the mechanisms underlying this phenomenon beyond amino acid substitutions. Here, we systematically examined the biochemical and structural determinants differentiating functionally nonexchangeable OxyRs, H2O2-responding transcriptional regulators from two Gammaproteobacteria, Escherichia coli and Shewanella oneidensis. Using SoOxyR-based OxyR chimeras and mutants, we demonstrated that residues 283 to 289, which form the first half of the last C-terminal α-helix (α10), are critical for the proper function of SoOxyR and cannot be replaced with the EcOxyR counterpart. Crystal structural analysis reveals that this last helix is critical for formation of high-order oligomers upon DNA binding, a phenomenon not observed with EcOxyR. Our findings provide a new dimension to differences in sequence and structural features among bacterial species in determining regulatory activities of homologous regulators.


Subject(s)
Escherichia coli Proteins , Shewanella , Escherichia coli/genetics , Hydrogen Peroxide/metabolism , Bacterial Proteins/metabolism , Shewanella/genetics , DNA/metabolism , Escherichia coli Proteins/metabolism , Gene Expression Regulation, Bacterial , Repressor Proteins/genetics
6.
Viruses ; 13(5)2021 05 01.
Article in English | MEDLINE | ID: mdl-34062934

ABSTRACT

Astroviruses (AstVs) are non-enveloped, positive single-stranded RNA viruses that cause a wide range of inflammatory diseases in mammalian and avian hosts. The T = 3 viral capsid is unique in its ability to infect host cells in a process driven by host proteases. Intercellular protease cleavages allow for viral egress from a cell, while extracellular cleavages allow for the virus to enter a new host cell to initiate infection. High-resolution models of the capsid core indicate a large, exposed region enriched with protease cleavage sites. The virus spike protein allows for binding to target cells and is the major target for naturally occurring and engineered neutralizing antibodies. During maturation, the capsid goes through significant structural changes including the loss of many surface spikes. The capsid interacts with host membranes during the virus life cycle at multiple stages such as assembly, host cell entry and exit. This review will cover recent findings and insights related to the structure of the capsid and its function. Further understanding of the viral capsid structure and maturation process can contribute to new vaccines, gastric therapeutics, and viral engineering applications.


Subject(s)
Capsid/chemistry , Capsid/metabolism , Mamastrovirus/physiology , Capsid Proteins/genetics , Crystallography , Humans , Mamastrovirus/chemistry , Mamastrovirus/genetics , Models, Molecular , Virion
7.
EBioMedicine ; 67: 103381, 2021 May.
Article in English | MEDLINE | ID: mdl-33993052

ABSTRACT

BACKGROUND: An ideal animal model to study SARS-coronavirus 2 (SARS-CoV-2) pathogenesis and evaluate therapies and vaccines should reproduce SARS-CoV-2 infection and recapitulate lung disease like those seen in humans. The angiotensin-converting enzyme 2 (ACE2) is a functional receptor for SARS-CoV-2, but mice are resistant to the infection because their ACE2 is incompatible with the receptor-binding domain (RBD) of the SARS-CoV-2 spike protein . METHODS: SARS-CoV-2 was passaged in BALB/c mice to obtain mouse-adapted virus strain. Complete genome deep sequencing of different generations of viruses was performed to characterize the dynamics of the adaptive mutations in SARS-CoV-2. Indirect immunofluorescence analysis and Biolayer interferometry experiments determined the binding affinity of mouse-adapted SARS-CoV-2 WBP-1 RBD to mouse ACE2 and human ACE2. Finally, we tested whether TLR7/8 agonist Resiquimod (R848) could also inhibit the replication of WBP-1 in the mouse model. FINDINGS: The mouse-adapted strain WBP-1 showed increased infectivity in BALB/c mice and led to severe interstitial pneumonia. We characterized the dynamics of the adaptive mutations in SARS-CoV-2 and demonstrated that Q493K and Q498H in RBD significantly increased its binding affinity towards mouse ACE2. Additionally, the study tentatively found that the TLR7/8 agonist Resiquimod was able to protect mice against WBP-1 challenge. Therefore, this mouse-adapted strain is a useful tool to investigate COVID-19 and develop new therapies. INTERPRETATION: We found for the first time that the Q493K and Q498H mutations in the RBD of WBP-1 enhanced its interactive affinities with mACE2. The mouse-adapted SARS-CoV-2 provides a valuable tool for the evaluation of novel antiviral and vaccine strategies. This study also tentatively verified the antiviral activity of TLR7/8 agonist Resiquimod against SARS-CoV-2 in vitro and in vivo. FUNDING: This research was funded by the National Key Research and Development Program of China (2020YFC0845600) and Emergency Science and Technology Project of Hubei Province (2020FCA046) and Robert A. Welch Foundation (C-1565).


Subject(s)
Amino Acid Substitution , Angiotensin-Converting Enzyme 2/metabolism , COVID-19/virology , Imidazoles/administration & dosage , SARS-CoV-2/pathogenicity , Spike Glycoprotein, Coronavirus/metabolism , Adaptation, Physiological , Animals , Binding Sites , COVID-19/metabolism , COVID-19/prevention & control , Caco-2 Cells , Chlorocebus aethiops , Disease Models, Animal , Female , High-Throughput Nucleotide Sequencing , Humans , Imidazoles/pharmacology , Mice , Mice, Inbred BALB C , SARS-CoV-2/genetics , Serial Passage , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Vero Cells , Virus Replication/drug effects , Whole Genome Sequencing
8.
Virology ; 559: 145-155, 2021 07.
Article in English | MEDLINE | ID: mdl-33887645

ABSTRACT

PB1 functions as the catalytic subunit of influenza virus RNA polymerase complex and plays an essential role in viral RNA transcription and replication. To determine plasticity in the PB1 enzymatic site and map catalytically important residues, 658 mutants were constructed, each with one to seven mutations in the enzymatic site of PB1. The polymerase activities of these mutants were quantified using a minigenome assay, and polymerase activity-associated residues were identified using sparse learning. Results showed that polymerase activities are affected by the residues not only within the conserved motifs, but also across the inter-motif regions of PB1, and the latter are primarily located at the base of the palm domain, a region that is conserved in avian PB1 but with high sequence diversity in swine PB1. Our results suggest that mutations outside the PB1 conserved motifs may affect RNA replication and could be associated with influenza virus host adaptation.


Subject(s)
Catalytic Domain/genetics , Genetic Variation , Influenza A virus/genetics , RNA, Viral/genetics , Viral Proteins/genetics , Virus Replication/genetics , Amino Acid Motifs/genetics , Animals , Biocatalysis , DNA-Directed RNA Polymerases/metabolism , Dogs , HEK293 Cells , Humans , Influenza A virus/enzymology , Machine Learning , Madin Darby Canine Kidney Cells , Mutation , Swine
9.
J Virol ; 94(21)2020 10 14.
Article in English | MEDLINE | ID: mdl-32817218

ABSTRACT

Fiber proteins are commonly found in eukaryotic and prokaryotic viruses, where they play important roles in mediating viral attachment and host cell entry. They typically form trimeric structures and are incorporated into virions via noncovalent interactions. Orsay virus, a small RNA virus which specifically infects the laboratory model nematode Caenorhabditis elegans, encodes a fibrous protein δ that can be expressed as a free protein and as a capsid protein-δ (CP-δ) fusion protein. Free δ has previously been demonstrated to facilitate viral exit following intracellular expression; however, the biological significance and prevalence of CP-δ remained relatively unknown. Here, we demonstrate that Orsay CP-δ is covalently incorporated into infectious particles, the first example of any attached viral fibers known to date. The crystal structure of δ(1-101) (a deletion mutant containing the first 101 amino acid [aa] residues of δ) reveals a pentameric, 145-Å long fiber with an N-terminal coiled coil followed by multiple ß-bracelet repeats. Electron micrographs of infectious virions depict particle-associated CP-δ fibers with dimensions similar to free δ. The δ proteins from two other nematode viruses, Le Blanc and Santeuil, which both specifically infect Caenorhabditis briggsae, were also found to form fibrous molecules. Recombinant Le Blanc δ was able to block Orsay virus infection in worm culture and vice versa, suggesting these two viruses likely compete for the same cell receptor(s). Thus, we propose that while CP-δ likely mediates host cell attachment for all three nematode viruses, additional downstream factor(s) ultimately determine the host specificity and range of each virus.IMPORTANCE Viruses often have extended fibers to mediate host cell recognition and entry, serving as promising targets for antiviral drug development. Unlike other known viral fibers, the δ proteins from the three recently discovered nematode viruses are incorporated into infectious particles as protruding fibers covalently linked to the capsid. Crystal structures of δ revealed novel pentameric folding repeats, which we term ß-bracelets, in the intermediate shaft region. Based on sequence analysis, the ß-bracelet motif of δ is conserved in all three nematode viruses and could account for ∼60% of the total length of the fiber. Our study indicated that δ plays important roles in cell attachment for this group of nematode viruses. In addition, the tightly knitted ß-bracelet fold, which presumably allows δ to survive harsh environments in the worm gut, could be applicable to bioengineering applications given its potentially high stability.


Subject(s)
Capsid Proteins/chemistry , Nodaviridae/ultrastructure , Polyproteins/chemistry , Scleroproteins/chemistry , Viral Proteins/chemistry , Virion/ultrastructure , Amino Acid Sequence , Animals , Caenorhabditis elegans/virology , Capsid Proteins/genetics , Capsid Proteins/metabolism , Cloning, Molecular , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Host Specificity , Models, Molecular , Nodaviridae/genetics , Nodaviridae/metabolism , Polyproteins/genetics , Polyproteins/metabolism , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Scleroproteins/genetics , Scleroproteins/metabolism , Sequence Alignment , Sequence Homology, Amino Acid , Viral Proteins/genetics , Viral Proteins/metabolism , Virion/genetics , Virion/metabolism
10.
J Virol ; 92(14)2018 07 15.
Article in English | MEDLINE | ID: mdl-29743360

ABSTRACT

Nonenveloped gastrointestinal viruses, such as human rotavirus, can exit infected cells from the apical surface without cell lysis. The mechanism of such nonlytic exit is poorly understood. The nonenveloped Orsay virus is an RNA virus infecting the intestine cells of the nematode Caenorhabditis elegans Dye staining results suggested that Orsay virus exits from the intestine of infected worms in a nonlytic manner. Therefore, the Orsay virus-C. elegans system provides an excellent in vivo model to study viral exit. The Orsay virus genome encodes three proteins: RNA-dependent RNA polymerase, capsid protein (CP), and a nonstructural protein, δ. δ can also be expressed as a structural CP-δ fusion. We generated an ATG-to-CTG mutant virus that had a normal CP-δ fusion but could not produce free δ due to the lack of the start codon. This mutant virus showed a viral exit defect without obvious phenotypes in other steps of viral infection, suggesting that δ is involved in viral exit. Ectopically expressed free δ localized near the apical membrane of intestine cells in C. elegans and colocalized with ACT-5, an intestine-specific actin that is a component of the terminal web. Orsay virus infection rearranged ACT-5 apical localization. Reduction of the ACT-5 level via RNA interference (RNAi) significantly exacerbated the viral exit defect of the δ mutant virus, suggesting that δ and ACT-5 functionally interact to promote Orsay virus exit. Together, these data support a model in which the viral δ protein interacts with the actin network at the apical side of host intestine cells to mediate the polarized, nonlytic egress of Orsay virus.IMPORTANCE An important step of the viral life cycle is how viruses exit from host cells to spread to other cells. Certain nonenveloped viruses can exit cultured cells in nonlytic ways; however, such nonlytic exit has not been demonstrated in vivo In addition, it is not clear how such nonlytic exit is achieved mechanistically in vivo Orsay virus is a nonenveloped RNA virus that infects the intestine cells of the nematode C. elegans It is currently the only virus known to naturally infect C. elegans Using this in vivo model, we show that the δ protein encoded by Orsay virus facilitates the nonlytic exit of the virus, possibly by interacting with host actin on the apical side of worm intestine cells.


Subject(s)
Caenorhabditis elegans/virology , Intracellular Signaling Peptides and Proteins/metabolism , Membrane Proteins/metabolism , Nodaviridae/pathogenicity , RNA Virus Infections/virology , Viral Proteins/metabolism , Virus Release , Virus Replication , Animals , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , RNA Virus Infections/metabolism , Viral Proteins/genetics
11.
Cell Host Microbe ; 22(5): 627-638.e7, 2017 Nov 08.
Article in English | MEDLINE | ID: mdl-29107643

ABSTRACT

TRIM25 is an E3 ubiquitin ligase that activates RIG-I to promote the antiviral interferon response. The NS1 protein from all strains of influenza A virus binds TRIM25, although not all virus strains block the interferon response, suggesting alternative mechanisms for TRIM25 action. Here we present a nuclear role for TRIM25 in specifically restricting influenza A virus replication. TRIM25 inhibits viral RNA synthesis through a direct mechanism that is independent of its ubiquitin ligase activity and the interferon pathway. This activity can be inhibited by the viral NS1 protein. TRIM25 inhibition of viral RNA synthesis results from its binding to viral ribonucleoproteins (vRNPs), the structures containing individual viral RNA segments, the viral polymerase, and multiple viral nucleoproteins. TRIM25 binding does not inhibit initiation of capped-RNA-primed viral mRNA synthesis by the viral polymerase. Rather, the onset of RNA chain elongation is inhibited because TRIM25 prohibits the movement of RNA into the polymerase complex.


Subject(s)
Influenza, Human/metabolism , RNA, Viral/drug effects , RNA, Viral/metabolism , Ribonucleoproteins/drug effects , Transcription Factors/antagonists & inhibitors , Transcription, Genetic/drug effects , Tripartite Motif Proteins/antagonists & inhibitors , Ubiquitin-Protein Ligases/antagonists & inhibitors , Virus Replication/drug effects , A549 Cells , Antiviral Agents/metabolism , Antiviral Restriction Factors , Carrier Proteins/genetics , Carrier Proteins/metabolism , Cell Line , DEAD Box Protein 58/metabolism , HEK293 Cells , Host-Pathogen Interactions , Humans , Influenza A Virus, H3N2 Subtype/metabolism , Influenza A virus/metabolism , Influenza A virus/pathogenicity , Interferons/metabolism , Models, Molecular , Protein Binding , RNA, Messenger/metabolism , Receptors, Immunologic , SUMO-1 Protein/genetics , SUMO-1 Protein/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Tripartite Motif Proteins/genetics , Tripartite Motif Proteins/metabolism , Ubiquitin-Protein Ligases/drug effects , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism , Ubiquitination , Viral Nonstructural Proteins/antagonists & inhibitors , Viral Nonstructural Proteins/metabolism
12.
Proc Natl Acad Sci U S A ; 114(32): 8550-8555, 2017 08 08.
Article in English | MEDLINE | ID: mdl-28739952

ABSTRACT

Many enveloped viruses encode a matrix protein. In the influenza A virus, the matrix protein M1 polymerizes into a rigid protein layer underneath the viral envelope to help enforce the shape and structural integrity of intact viruses. The influenza virus M1 is also known to mediate virus budding as well as the nuclear export of the viral nucleocapsids and their subsequent packaging into nascent viral particles. Despite extensive studies on the influenza A virus M1 (FLUA-M1), only crystal structures of its N-terminal domain are available. Here we report the crystal structure of the full-length M1 from another orthomyxovirus that infects fish, the infectious salmon anemia virus (ISAV). The structure of ISAV-M1 assumes the shape of an elbow, with its N domain closely resembling that of the FLUA-M1. The C domain, which is connected to the N domain through a flexible linker, is made of four α-helices packed as a tight bundle. In the crystal, ISAV-M1 monomers form infinite 2D arrays with a network of interactions involving both the N and C domains. Results from liposome flotation assays indicated that ISAV-M1 binds membrane via electrostatic interactions that are primarily mediated by a positively charged surface loop from the N domain. Cryoelectron tomography reconstruction of intact ISA virions identified a matrix protein layer adjacent to the inner leaflet of the viral membrane. The physical dimensions of the virion-associated matrix layer are consistent with the 2D ISAV-M1 crystal lattice, suggesting that the crystal lattice is a valid model for studying M1-M1, M1-membrane, and M1-RNP interactions in the virion.


Subject(s)
Orthomyxoviridae/metabolism , Viral Matrix Proteins/chemistry , Viral Matrix Proteins/ultrastructure , Crystallography, X-Ray , Influenza A virus/chemistry , Membrane Proteins/metabolism , Membranes/metabolism , Orthomyxoviridae/physiology , Polymerization , Viral Proteins/metabolism , Virion/metabolism , Virus Release/physiology
13.
PLoS Pathog ; 13(2): e1006231, 2017 02.
Article in English | MEDLINE | ID: mdl-28241071

ABSTRACT

Despite the wide use of Caenorhabditis elegans as a model organism, the first virus naturally infecting this organism was not discovered until six years ago. The Orsay virus and its related nematode viruses have a positive-sense RNA genome, encoding three proteins: CP, RdRP, and a novel δ protein that shares no homology with any other proteins. δ can be expressed either as a free δ or a CP-δ fusion protein by ribosomal frameshift, but the structure and function of both δ and CP-δ remain unknown. Using a combination of electron microscopy, X-ray crystallography, computational and biophysical analyses, here we show that the Orsay δ protein forms a ~420-Å long, pentameric fiber with an N-terminal α-helical bundle, a ß-stranded filament in the middle, and a C-terminal head domain. The pentameric nature of the δ fiber has been independently confirmed by both mass spectrometry and analytical ultracentrifugation. Recombinant Orsay capsid containing CP-δ shows protruding long fibers with globular heads at the distal end. Mutant viruses with disrupted CP-δ fibers were generated by organism-based reverse genetics. These viruses were found to be either non-viable or with poor infectivity according to phenotypic and qRT-PCR analyses. Furthermore, addition of purified δ proteins to worm culture greatly reduced Orsay infectivity in a sequence-specific manner. Based on the structure resemblance between the Orsay CP-δ fiber and the fibers from reovirus and adenovirus, we propose that CP-δ functions as a cell attachment protein to mediate Orsay entry into worm intestine cells.


Subject(s)
Caenorhabditis elegans/virology , Capsid Proteins/ultrastructure , RNA Viruses/physiology , Virus Internalization , Animals , Capsid Proteins/chemistry , Circular Dichroism , Crystallography, X-Ray , Mass Spectrometry , Microscopy, Electron, Transmission , Mutagenesis, Site-Directed , Organisms, Genetically Modified , RNA Virus Infections , RNA Viruses/ultrastructure , Virion/chemistry , Virion/ultrastructure
14.
J Virol ; 90(20): 9008-17, 2016 10 15.
Article in English | MEDLINE | ID: mdl-27466429

ABSTRACT

UNLABELLED: Human astrovirus (HAstV) is a leading cause of viral diarrhea in infants and young children worldwide. HAstV is a nonenveloped virus with a T=3 capsid and a positive-sense RNA genome. The capsid protein (CP) of HAstV is synthesized as a 90-kDa precursor (VP90) that can be divided into three linear domains: a conserved N-terminal domain, a hypervariable domain, and an acidic C-terminal domain. Maturation of HAstV requires proteolytic processing of the astrovirus CP both inside and outside the host cell, resulting in the removal of the C-terminal domain and the breakdown of the rest of the CP into three predominant protein species with molecular masses of ∼34, 27/29, and 25/26 kDa, respectively. We have now solved the crystal structure of VP90(71-415) (amino acids [aa] 71 to 415 of VP90) of human astrovirus serotype 8 at a 2.15-Å resolution. VP90(71-415) encompasses the conserved N-terminal domain of VP90 but lacks the hypervariable domain, which forms the capsid surface spikes. The structure of VP90(71-415) is comprised of two domains: an S domain, which adopts the typical jelly-roll ß-barrel fold, and a P1 domain, which forms a squashed ß-barrel consisting of six antiparallel ß-strands similar to what was observed in the hepatitis E virus (HEV) capsid structure. Fitting of the VP90(71-415) structure into the cryo-electron microscopy (EM) maps of HAstV produced an atomic model for a continuous, T=3 icosahedral capsid shell. Our pseudoatomic model of the human HAstV capsid shell provides valuable insights into intermolecular interactions required for capsid assembly and trypsin-mediated proteolytic maturation needed for virus infectivity. Such information has potential applications in the development of a virus-like particle (VLP) vaccine as well as small-molecule drugs targeting astrovirus assembly/maturation. IMPORTANCE: Human astrovirus (HAstV) is a leading cause of viral diarrhea in infants and young children worldwide. As a nonenveloped virus, HAstV exhibits an intriguing feature in that its maturation requires extensive proteolytic processing of the astrovirus capsid protein (CP) both inside and outside the host cell. Mature HAstV contains three predominant protein species, but the mechanism for acquired infectivity upon maturation is unclear. We have solved the crystal structure of VP90(71-415) of human astrovirus serotype 8. VP90(71-415) encompasses the conserved N-terminal domain of the viral CP. Fitting of the VP90(71-415) structure into the cryo-EM maps of HAstV produced an atomic model for the T=3 icosahedral capsid. Our model of the HAstV capsid provides valuable insights into intermolecular interactions required for capsid assembly and trypsin-mediated proteolytic maturation. Such information has potential applications in the development of a VLP vaccine as well as small-molecule drugs targeting astrovirus assembly/maturation.


Subject(s)
Capsid Proteins/chemistry , Mamastrovirus/chemistry , Crystallography, X-Ray , Humans , Models, Molecular , Molecular Conformation
15.
PLoS Pathog ; 12(4): e1005523, 2016 Apr.
Article in English | MEDLINE | ID: mdl-27078841

ABSTRACT

During the replication cycle of double-stranded (ds) RNA viruses, the viral RNA-dependent RNA polymerase (RdRP) replicates and transcribes the viral genome from within the viral capsid. How the RdRP molecules are packaged within the virion and how they function within the confines of an intact capsid are intriguing questions with answers that most likely vary across the different dsRNA virus families. In this study, we have determined a 2.4 Å resolution structure of an RdRP from the human picobirnavirus (hPBV). In addition to the conserved polymerase fold, the hPBV RdRP possesses a highly flexible 24 amino acid loop structure located near the C-terminus of the protein that is inserted into its active site. In vitro RNA polymerization assays and site-directed mutagenesis showed that: (1) the hPBV RdRP is fully active using both ssRNA and dsRNA templates; (2) the insertion loop likely functions as an assembly platform for the priming nucleotide to allow de novo initiation; (3) RNA transcription by the hPBV RdRP proceeds in a semi-conservative manner; and (4) the preference of virus-specific RNA during transcription is dictated by the lower melting temperature associated with the terminal sequences. Co-expression of the hPBV RdRP and the capsid protein (CP) indicated that, under the conditions used, the RdRP could not be incorporated into the recombinant capsids in the absence of the viral genome. Additionally, the hPBV RdRP exhibited higher affinity towards the conserved 5'-terminal sequence of the viral RNA, suggesting that the RdRP molecules may be encapsidated through their specific binding to the viral RNAs during assembly.


Subject(s)
Capsid/metabolism , Genome, Viral/genetics , RNA Viruses/genetics , RNA, Double-Stranded/genetics , RNA, Viral/metabolism , RNA-Dependent RNA Polymerase/metabolism , Capsid Proteins/genetics , Humans , RNA, Double-Stranded/metabolism , RNA, Viral/genetics , Virion/genetics , Virion/metabolism
16.
Proc Natl Acad Sci U S A ; 111(35): 12781-6, 2014 Sep 02.
Article in English | MEDLINE | ID: mdl-25136116

ABSTRACT

Orsay, the first virus discovered to naturally infect Caenorhabditis elegans or any nematode, has a bipartite, positive-sense RNA genome. Sequence analyses show that Orsay is related to nodaviruses, but molecular characterizations of Orsay reveal several unique features, such as the expression of a capsid-δ fusion protein and the use of an ATG-independent mechanism for translation initiation. Here we report the crystal structure of an Orsay virus-like particle assembled from recombinant capsid protein (CP). Orsay capsid has a T = 3 icosahedral symmetry with 60 trimeric surface spikes. Each CP can be divided into three regions: an N-terminal arm that forms an extended protein interaction network at the capsid interior, an S domain with a jelly-roll, ß-barrel fold forming the continuous capsid, and a P domain that forms surface spike projections. The structure of the Orsay S domain is best aligned to T = 3 plant RNA viruses but exhibits substantial differences compared with the insect-infecting alphanodaviruses, which also lack the P domain in their CPs. The Orsay P domain is remotely related to the P1 domain in calicivirus and hepatitis E virus, suggesting a possible evolutionary relationship. Removing the N-terminal arm produced a slightly expanded capsid with fewer nucleic acids packaged, suggesting that the arm is important for capsid stability and genome packaging. Because C. elegans-Orsay serves as a highly tractable model for studying viral pathogenesis, our results should provide a valuable structural framework for further studies of Orsay replication and infection.


Subject(s)
Caenorhabditis elegans/virology , Capsid Proteins/chemistry , Nodaviridae/chemistry , Amino Acid Sequence , Animals , Capsid Proteins/genetics , Crystallography, X-Ray , Evolution, Molecular , Molecular Sequence Data , Nodaviridae/genetics , Nodaviridae/pathogenicity , Protein Structure, Secondary , Protein Structure, Tertiary , RNA, Viral/chemistry , RNA, Viral/genetics , Virulence
17.
Adv Virus Res ; 86: 59-85, 2013.
Article in English | MEDLINE | ID: mdl-23498903

ABSTRACT

Partitiviruses constitute one of the nine currently recognized families of viruses with encapsidated, double-stranded (ds)RNA genomes. The partitivirus genome is bisegmented, and each genome segment is packaged inside a separate viral capsid. Different partitiviruses infect plants, fungi, or protozoa. Recent studies have shed light on the three-dimensional structures of the virions of three representative fungal partitiviruses. These structures include a number of distinctive features, allowing informative comparisons with the structures of dsRNA viruses from other families. The results and comparisons suggest several new conclusions about the functions, assembly, and evolution of these viruses.


Subject(s)
Fungi/virology , RNA Viruses/ultrastructure , Imaging, Three-Dimensional , Phylogeny , RNA Viruses/classification , RNA Viruses/genetics , RNA, Viral/genetics , Virion/ultrastructure
18.
mBio ; 4(1): e00467-12, 2012 Dec 26.
Article in English | MEDLINE | ID: mdl-23269829

ABSTRACT

UNLABELLED: Influenza A virions contain eight ribonucleoproteins (RNPs), each comprised of a negative-strand viral RNA, the viral polymerase, and multiple nucleoproteins (NPs) that coat the viral RNA. NP oligomerization along the viral RNA is mediated largely by a 28-amino-acid tail loop. Influenza viral RNPs, which serve as the templates for viral RNA synthesis in the nuclei of infected cells, are not linear but rather are organized in hairpin-like double-helical structures. Here we present results that strongly support a coherent model for the assembly of the double-helical influenza virus RNP structure. First, we show that NP self-associates much more weakly in the absence of RNA than in its presence, indicating that oligomerization is very limited in the cytoplasm. We also show that once NP has oligomerized, it can dissociate in the absence of bound RNA, but only at a very slow rate, indicating that the NP scaffold remains intact when viral RNA dissociates from NPs to interact with the polymerase during viral RNA synthesis. In addition, we identify a previously unknown NP-NP interface that is likely responsible for organizing the double-helical viral RNP structure. This identification stemmed from our observation that NP lacking the oligomerization tail loop forms monomers and dimers. We determined the crystal structure of this NP dimer, which reveals this new NP-NP interface. Mutation of residues that disrupt this dimer interface does not affect oligomerization of NPs containing the tail loop but does inactivate the ability of NPs containing the tail loop to support viral RNA synthesis in minigenome assays. IMPORTANCE: Influenza A virus, the causative agent of human pandemics and annual epidemics, contains eight RNA gene segments. Each RNA segment assumes the form of a rod-shaped, double-helical ribonucleoprotein (RNP) that contains multiple copies of a viral protein, the nucleoprotein (NP), which coats the RNA segment along its entire length. Previous studies showed that NP molecules can polymerize via a structural element called the tail loop, but the RNP assembly process is poorly understood. Here we show that influenza virus RNPs are likely assembled from NP monomers, which polymerize through the tail loop only in the presence of viral RNA. Using X-ray crystallography, we identified an additional way that NP molecules interact with each other. We hypothesize that this new interaction is responsible for organizing linear, single-stranded influenza virus RNPs into double-helical structures. Our results thus provide a coherent model for the assembly of the double-helical influenza virus RNP structure.


Subject(s)
Influenza A virus/chemistry , Influenza A virus/metabolism , Ribonucleoproteins/chemistry , Ribonucleoproteins/metabolism , Crystallography, X-Ray , Models, Molecular , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , RNA, Viral/metabolism
19.
Adv Exp Med Biol ; 726: 245-66, 2012.
Article in English | MEDLINE | ID: mdl-22297517

ABSTRACT

The Bunyaviridae family is comprised of a large number of negative-sense, single-stranded RNA viruses that infect animals, insects, and plants. The tripartite genome of bunyaviruses, encapsidated in the form of individual ribonucleoprotein complexes, encodes four structural proteins, the glycoproteins Gc and Gn, the nucleoprotein N, and the viral polymerase L. Some bunyaviruses also use an ambi-sense strategy to encode the nonstructural proteins NSs and NSm. While some bunyaviruses have a T = 12 icosahedral symmetry, others only have locally ordered capsids, or capsids with no detectable symmetry. Bunyaviruses enter cells through clathrin-mediated endocytosis or phagocytosis. In endosome, viral glycoproteins facilitate membrane fusion at acidic pH, thus allowing bunyaviruses to uncoat and deliver their genomic RNA into host cytoplasm. Bunyaviruses replicate in cytoplasm where the viral polymerase L catalyzes both transcription and replication of the viral genome. While transcription requires a cap primer for initiation and ends at specific termination signals before the 3' end of the template is reached, replication copies the entire template and does not depend on any primer for initiation. This review will discuss some of the most interesting aspects of bunyavirus replication, including L protein/N protein-mediated cap snatching, prime-and-realign for transcription and replication initiation, translation-coupled transcription, sequence/secondary structure-dependent transcription termination, ribonucleoprotein encapsidation, and N protein-mediated initiation of viral protein translation. Recent developments on the structure and functional characterization of the bunyavirus capsid and the RNA synthesis machineries (including both protein L and N) will also be discussed.


Subject(s)
Bunyaviridae/physiology , Bunyaviridae/ultrastructure , Virus Replication , Animals , Bunyaviridae/chemistry , Bunyaviridae/genetics , Genome, Viral , Humans , Models, Molecular , Molecular Motor Proteins/chemistry , Molecular Motor Proteins/metabolism , Protein Biosynthesis , Protein Conformation , RNA, Viral/genetics , RNA, Viral/metabolism , Transcription, Genetic , Viral Proteins/chemistry , Viral Proteins/genetics , Viral Proteins/metabolism
20.
J Biol Chem ; 287(11): 8039-47, 2012 Mar 09.
Article in English | MEDLINE | ID: mdl-22179819

ABSTRACT

The collagen triple helix is the most abundant protein fold in humans. Despite its deceptively simple structure, very little is understood about its folding and fibrillization energy landscape. In this work, using a combination of x-ray crystallography and nuclear magnetic resonance spectroscopy, we carry out a detailed study of stabilizing pair-wise interactions between the positively charged lysine and the negatively charged amino acids aspartate and glutamate. We find important differences in the side chain conformation of amino acids in the crystalline and solution state. Structures from x-ray crystallography may have similarities to the densely packed triple helices of collagen fibers whereas solution NMR structures reveal the simpler interactions of isolated triple helices. In solution, two distinct types of contacts are observed: axial and lateral. Such register-specific interactions are crucial for the understanding of the registration process of collagens and the overall stability of proteins in this family. However, in the crystalline state, there is a significant rearrangement of the side chain conformation allowing for packing interactions between adjacent helices, which suggests that charged amino acids may play a dual role in collagen stabilization and folding, first at the level of triple helical assembly and second during fibril formation.


Subject(s)
Collagen/chemistry , Animals , Collagen/chemical synthesis , Crystallography, X-Ray , Humans , Nuclear Magnetic Resonance, Biomolecular , Protein Stability , Protein Structure, Secondary , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL
...