Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Small ; : e2402197, 2024 Apr 29.
Article in English | MEDLINE | ID: mdl-38682612

ABSTRACT

The conjugation of terminal ammonium salt groups with perovskite surfaces is a frequently employed technique that aims to enhance the overall performance of perovskite materials, encompassing both bulk and surface properties. Particularly, it exhibits heightened efficacy when applied to surface modification, due to its ability to mitigate defect accumulation and facilitate facile binding with the receptive sites inherent to the perovskite structure. However, the interaction of the bulk ammonium group with PbI2 has the potential to form a low-dimensional phase of perovskite, which may obstruct carrier extraction at the interface. Therefore, the surface passivators (MeO-PFACl) are designed through intramolecular potential manipulation. The combinations of the electron-donating methoxy group and π-π conjugation of the phenyl ring reduce the local potential at the reactive site of formamidinium group, making it less likely to form a low-dimension phase with perovskite. This surface passivation strategy effectively suppresses the surface nonradiative recombination and promotes the interface carrier extraction. The devices treated with MeO-PFACl have demonstrated exceptional performance, achieving a peak power conversion efficiency (PCE) of 25.88%, with an average PCE of 25.37%. These works offer a novel principle for enhancing both the efficiency and stability of PSCs using ammonium-incorporated molecules without the induction of an additional phase layer.

2.
Chem Commun (Camb) ; 59(72): 10813-10816, 2023 Sep 07.
Article in English | MEDLINE | ID: mdl-37602429

ABSTRACT

Surface properties of SnO2 and their effects on the growth of perovskite films play a crucial role for perovskite solar cells (PSCs). Herein, a facile strategy to synchronously regulate the buried interface defects and energy level arrangement, as well as improve the crystallinity of perovskite films with alleviated micro-strain by pre-modifying the SnO2 surface with ammonium hexafluorophosphate (NH4PF6) is proposed. The device achieved the promising PCE of 22.50% and improved stability.

3.
Small ; 19(20): e2207480, 2023 May.
Article in English | MEDLINE | ID: mdl-36840656

ABSTRACT

Mixed lead-tin (PbSn) perovskite solar cells (PSCs) possess low toxicity and adjustable bandgap for both single-junction and all-perovskite tandem solar cells. However, the performance of mixed PbSn PSCs still lags behind the theoretical efficiency. The uncontrollable crystallization and the resulting structural defect are important reasons. Here, the bidirectional anions gathering strategy (BAG) is reported by using Methylammonium acetate (MAAc) and Methylammonium thiocyanate (MASCN) as perovskite bulk additives, which Ac- escapes from the perovskite film top surface while SCN- gathers at the perovskite film bottom in the crystallization process. After the optoelectronic techniques, the bidirectional anions movement caused by the top-down gradient crystallization is demonstrated. The layer-by-layer crystallization can collect anions in the next layer and gather at the broader, enabling a controllable crystallization process, thus getting a high-quality perovskite film with better phase crystallinity and lower defect concentration. As a result, PSCs treated by the BAG strategy exhibit outstanding photovoltaic and electroluminescent performance with a champion efficiency of 22.14%. Additionally, it demonstrates excellent long-term stability, which retains ≈92.8% of its initial efficiency after 4000 h aging test in the N2 glove box.

4.
ACS Appl Mater Interfaces ; 14(25): 28826-28833, 2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35713617

ABSTRACT

Defect accumulation and nonradiative recombination at the interface of the electron-transport layer (ETL) and the photosensitive layer are inevitable obstacles to efficient and stable perovskite solar cells (PSCs). Herein, we reported a dual-effect interface modification strategy that employs potassium tetrafluoroborate (KBF4) molecules for the simultaneous passivation of the SnO2/perovskite interface and perovskite grain boundaries. The introduced highly electronegative BF4- enriched at the SnO2 surface and the chemical bond interaction between them can effectively reduce the hydroxyl (-OH) group defects on the surface of SnO2, improve electron mobility, and reduce nonradiative recombination. Meanwhile, partial K+ diffuses into the grain boundaries, causing the halogen ions to be uniformly distributed in the perovskite film and resulting in better crystallinity. Therefore, the performance of the experimental device was improved from 20.34 to 22.90% compared with the reference device, with a high electrical performance (JSC = 25.1 mA cm-2, VOC = 1.137 V). In particular, the unencapsulated target PSCs retained 85% of their original PCE after aging for 1000 h under ambient conditions (70 ± 10% RH) in the dark.

5.
Adv Mater ; 34(18): e2110241, 2022 May.
Article in English | MEDLINE | ID: mdl-35230736

ABSTRACT

Mixed lead-tin perovskite solar cells (LTPSCs) with an ideal bandgap are demonstrated as a promising candidate to reach higher power conversion efficiency (PCE) than their Pb-counterparts. Herein, a Br-free mixed lead-tin perovskite material, FA0.8 MA0.2 Pb0.8 Sn0.2 I3 , with a bandgap of 1.33 eV, as a perovskite absorber, is selected. Through density functional theory calculations and optoelectronic techniques, it is demonstrated that both Pb- and Sn-related A-site vacancies are pushed into deeper energetic depth, causing severe nonradiative recombination. Hence, a selective targeting anchor strategy that employs phenethylammonium iodide and ethylenediamine diiodide as co-modifiers to selectively anchor with Pb- and Sn-related active sites and passivate bimetallic traps, respectively, is established. Furthermore, the selectivity of the molecular oriented anchor passivation is demonstrated through energetic depth specificity of Pb- and Sn-related traps. As a result, a substantially enhanced open-circuit voltage (VOC ) from 0.79 to 0.90 V for the LTPSCs is achieved, yielding a champion PCE of 22.51%, which is the highest PCE among the reported ideal-bandgap PSCs. The VOC loss is reduced to 0.43 V.

6.
Genes (Basel) ; 12(4)2021 03 25.
Article in English | MEDLINE | ID: mdl-33806256

ABSTRACT

To evaluate the performance of noninvasive prenatal screening (NIPS) in the detection of common aneuploidies in a population-based study, a total of 86,262 single pregnancies referred for NIPS were prospectively recruited. Among 86,193 pregnancies with reportable results, follow-up was successfully conducted in 1160 fetuses reported with a high-risk result by NIPS and 82,511 cases (95.7%) with a low-risk result. The screen-positive rate (SPR) of common aneuploidies and sex chromosome abnormalities (SCAs) provided by NIPS were 0.7% (586/83,671) and 0.6% (505/83,671), respectively. The positive predictive values (PPVs) for Trisomy 21, Trisomy 18, Trisomy 13 and SCAs were calculated as 89.7%, 84.0%, 52.6% and 38.0%, respectively. In addition, less rare chromosomal abnormalities, including copy number variants (CNVs), were detected, compared with those reported by NIPS with higher read-depth. Among these rare abnormalities, only 23.2% (13/56) were confirmed by prenatal diagnosis. In total, four common trisomy cases were found to be false negative, resulting in a rate of 0.48/10,000 (4/83,671). In summary, this study conducted in an underdeveloped region with limited support for the new technology development and lack of cost-effective prenatal testing demonstrates the importance of implementing routine aneuploidy screening in the public sector for providing early detection and precise prognostic information.


Subject(s)
Aneuploidy , Cell-Free Nucleic Acids/genetics , Fetus/pathology , Noninvasive Prenatal Testing/methods , Prenatal Diagnosis/methods , Sex Chromosome Aberrations , Trisomy/diagnosis , Adolescent , Adult , Cell-Free Nucleic Acids/analysis , China , Female , Fetus/metabolism , Humans , Male , Middle Aged , Pregnancy , Prospective Studies , Trisomy/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...