Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 15(21): 25704-25712, 2023 May 31.
Article in English | MEDLINE | ID: mdl-37198907

ABSTRACT

Understanding the photoionic mechanism in optoelectronic materials offers significant potential for various applications in the fields of laser, data/energy storage, signal processing, and ionic batteries. However, the research on such light-matter interaction using photons of sub-bandgap energy is scarce, especially for those transparent materials with photoactive centers that would generate a local field upon photoillumination. This research investigates the photoionic effect in Yb3+/Er3+ doped tellurate glass with Ag nanoparticles (NPs) embedded. It is found that the photogenerated electric dipole of Yb3+/Er3+ ions and local field of Ag NPs could block the Ag+ migration in an external electric field. The blocking phenomenon of Ag NPs is the so-called Coulomb blocking effect (ascribed to its quantum confinement effect), which would be further enhanced by the additional photoinduced localized surface plasmon resonance (LSPR) effect. Interestingly, the photoresponsive electric dipole of lanthanide ions could cause plasmon oscillation of Ag NPs, resulting in a partial release of the blockade of lanthanide ions and enhanced blockade via quantum confinement of Ag NPs. A model device is proposed according to the photoresistive behavior. The research gives another perspective on the photoionic effect via the photoresponsive local field generated by photoactive centers in optofunctional materials.

2.
J Phys Chem Lett ; 13(51): 12032-12040, 2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36541874

ABSTRACT

Defects are common in inorganic materials and not static upon annealing of the heat effect. Antithermal quenching of luminescence in phosphors may be ascribed to the migration of defects and/or ions, which has not been well-studied. Herein, we investigate the antithermal quenching mechanism of upconversion luminescence in Sc2(MoO4)3: 9%Yb1%Er with negative thermal expansion via a fresh perspective on thermodynamics and kinetics, concerning the thermally activated movement of defects and/or ions. Our results reveal a second-order phase transition taking place at ∼573 K induced by oxide-ion migration. The resulting variation of the thermodynamics and kinetics of the host lattice owing to the thermally induced oxide-ion movement contributes to a more suppressed nonradiative decay rate. The dynamic defects no longer act as quenching centers with regard to the time scale during which they stay nearby the Yb3+/Er3+ site in our proposed model. This research opens an avenue for understanding the antithermal quenching mechanism of luminescence via thermodynamics and kinetics.

SELECTION OF CITATIONS
SEARCH DETAIL
...