Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Front Chem ; 11: 1233889, 2023.
Article in English | MEDLINE | ID: mdl-37693168

ABSTRACT

Deep eutectic solvents (DES) formed using choline chloride (ChCl), p-toluenesulfonic acid (pTSA) of stoichiometry ChCl: pTSA (1:1) and (1:2), and its ternary eutectic mixtures with phosphoric acid (PA) 85% as an additive (ChCl: pTSA: PA) were evaluated for cellulose nanocrystal (CNC) isolation. Initially, the hydrolytic efficiency to produce CNC of each DES was compared before and after adding phosphoric acid by Hammett acidity parameters and the Gutmann acceptor number. Moreover, different DES molar ratios and reaction time were studied at 80°C for CNC optimization. The nanomaterial characteristics were analyzed by field emission scanning electron microscopy (FESEM), X-ray diffraction (XRD), Fourier-transform infrared spectroscopy (FTIR), and thermogravimetric analysis (TGA). The ternary eutectic mixture ChCl: pTSA: PA molar ratio (1:1:1.35) was chosen as a suitable recyclable ternary system at the laboratory scale. A CNC yield of about 80% was obtained from the hydrolysis of commercial cellulose in five cycles of recovery, but it dropped to 35% in pre-pilot scaling. However, no variation in the average size of the resulting CNC was observed (132 ± 50 nm x 23 ± 4 nm), which presented high thermal stability (Tmax 362°C) and high crystallinity of about 80% after 3 h of reaction time.

2.
Eur J Med Chem ; 246: 114926, 2023 Jan 15.
Article in English | MEDLINE | ID: mdl-36508970

ABSTRACT

Quinones are attractive pharmacological scaffolds for developing new agents for the treatment of different transmissible and non-transmissible human diseases due to their capacity to alter the cell redox homeostasis. The bioactivity and potential mode of action of 19 p-quinone derivatives fused to different aromatic rings (carbo or heterocycles) and harboring distinct substituents were investigated in infective Trypanosoma brucei brucei. All the compounds, except for a furanequinone (EC50=38 µM), proved to be similarly or even more potent (EC50 = 0.5-5.5 µM) than the clinical drug nifurtimox (EC50 = 5.3 µM). Three furanequinones and one thiazolequinone displayed a higher selectivity than nifurtimox. Two of these selective hits resulted potent inhibitors of T. cruzi proliferation (EC50=0.8-1.1 µM) but proved inactive against Leishmania infantum amastigotes. Most of the p-quinones induced a rapid and marked intracellular oxidation in T. b. brucei. DFT calculations on the oxidized quinone (Q), semiquinone (Q•-) and hydroquinone (QH2) suggest that all quinones have negative ΔG for the formation of Q•-. Qualitative and quantitative structure-activity relationship analyses in two or three dimensions of different electronic and biophysical descriptors of quinones and their corresponding bioactivities (killing potency and oxidative capacity) were performed. Charge distribution over the quinone ring carbons of Q and Q.- and the frontier orbitals energies of SUMO (Q.-) and LUMO (Q) correlate with their oxidative and trypanocidal activity. QSAR analysis also highlighted that both bromine substitution in the p-quinone ring and a bulky phenyl group attached to the furane and thiazole rings (which generates a negative charge due to the π electron system polarized by the nearby heteroatoms) are favorable for activity. By combining experimental and in silico procedures, this study disclosed important information about p-quinones that may help to rationally tune their electronic properties and biological activities.


Subject(s)
Chagas Disease , Trypanocidal Agents , Trypanosoma cruzi , Humans , Nifurtimox/therapeutic use , Quinones/pharmacology , Chagas Disease/drug therapy , Oxidation-Reduction , Computer Simulation , Trypanocidal Agents/pharmacology , Trypanocidal Agents/therapeutic use
3.
Chem Biodivers ; 19(6): e202101036, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35581163

ABSTRACT

The successful application of fragment-based drug discovery strategy for the efficient synthesis of phenoxy- or phenylamino-2-phenyl-benzofuran, -benzoxazole and -benzothiazole quinones is described. Interestingly, in the final step of the synthesis of the target compounds, unusual results were observed on the regiochemistry of the reaction of bromoquinones with phenol and aniline. A theoretical study was carried out for better understanding the factors that control the regiochemistry of these reactions. The substituted heterocyclic quinones were evaluated in vitro to determine their cytotoxicity by the MTT method in three pancreatic cancer cell lines (MIA-PaCa-2, BxPC-3, and AsPC-1). Phenoxy benzothiazole quinone 26a showed potent cytotoxic activity against BxPC-3 cell lines, while phenylamino benzoxazole quinone 20 was the most potent on MIA-PaCa-2 cells. Finally, electrochemical properties of these quinones were determined to correlate with a potential mechanism of action. All these results, indicate that the phenoxy quinone fragment led to compounds with increased activity against pancreatic cancer cells.


Subject(s)
Antineoplastic Agents , Pancreatic Neoplasms , Antineoplastic Agents/chemistry , Benzothiazoles/chemistry , Cell Line, Tumor , Humans , Pancreatic Neoplasms/drug therapy , Quinones/chemistry , Quinones/pharmacology , Pancreatic Neoplasms
4.
Bioorg Chem ; 111: 104823, 2021 06.
Article in English | MEDLINE | ID: mdl-33798844

ABSTRACT

Herein, the design and synthesis of new 2-phenyl(pyridinyl)benzimidazolequinones and their 5-phenoxy derivatives as potential anti-Trypanosoma cruzi agents are described. The compounds were evaluated in vitro against the epimastigotes and trypomastigote forms of Trypanosoma cruzi. The replacing of a benzene moiety in the naphthoquinone system by an imidazole enhanced the trypanosomicidal activity against Trypanosoma cruzi. Three of the tested compounds (11a-c) showed potent trypanosomicidal activity and compound 11a, with IC50 of 0.65 µM on the trypomastigote form of T. cruzi, proved to be 15 times more active than nifurtimox. Additionally, molecular docking studies indicate that the quinone derivatives 11a-c could have a multitarget profile interacting preferentially with trypanothione reductase and Old Yellow Enzyme.


Subject(s)
Benzimidazoles/pharmacology , Drug Design , Quinones/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Benzimidazoles/chemical synthesis , Benzimidazoles/chemistry , Dose-Response Relationship, Drug , Molecular Structure , Parasitic Sensitivity Tests , Quinones/chemical synthesis , Quinones/chemistry , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry
5.
Front Chem ; 9: 740161, 2021.
Article in English | MEDLINE | ID: mdl-35186890

ABSTRACT

The reactions between 2-chloro-5-nitro pyrimidine with a serie of α-nucleophile derivatives were kinetically evaluated. The kinetic study was carried out in aqueous media and the data shown an unusual split on the Brønsted type-plot, opening a controversial discussion based on reactivities and possible reaction pathways. These split Brønsted type-plots are discussed over the hypothetical transition state (TS) structures associated to concerted or stepwise mechanisms with emphasis on hydrogen bond interactions between electrophile/nucleophile pair able to determine the reactivities and the plausible reaction routes.

6.
ACS Omega ; 5(41): 26562-26572, 2020 Oct 20.
Article in English | MEDLINE | ID: mdl-33110984

ABSTRACT

A series of ionic liquids (ILs) composed by choline (Ch) as a cation and different amino acids (AA) as anions and their respective aqueous mixtures were prepared using different [Ch][AA] contents in a range of 0.4-46 mol % IL. These solvents were used for the first time to achieve an eco-friendlier Paraoxon degradation. The results show that [Ch][AA]/water mixtures are an effective reaction medium to degrade Paraoxon, even when the IL content in the mixture is low (0.4 mol % IL) and without the need of an extra nucleophile. Both the kinetics and the degradation pathways of pesticides depend on the nature of the AA on [Ch][AA] and the amount of an IL present in the mixture. We have demonstrated that in those mixtures with a low amount of [Ch][AA], the hydrolysis reaction is the main pathway for Paraoxon degradation, showing a catalytic effect of the IL. However, as the percentage of [Ch][AA] increases in the mixture, the nucleophilic attack of [Ch][AA] is evident. Finally, the aim of this study was to provide evidence of a promising and biocompatible methodology to degrade a toxic compound (Paraoxon) using a minimal quantity of an IL designed totally from natural resources.

7.
Org Biomol Chem ; 18(39): 7868-7875, 2020 10 14.
Article in English | MEDLINE | ID: mdl-32985641

ABSTRACT

Propylene carbonate is becoming a suitable green alternative to volatile organic solvents in the study of chemical reactions. In this study, an efficient method for nucleophilic degradation of five organophosphorus pesticides, fenitrothion, malathion, diazinon, parathion, and paraoxon, using propylene carbonate as a solvent is proposed. The effect of changing the nature of the nucleophile and the influence of microwave (MW) heating were investigated. A screening of temperatures (50 °C-120 °C) was performed under microwave heating. The pesticide degradation was followed by 31P NMR, and the extent of conversion (%) was calculated by the integration of phosphorus signals. Keeping in mind that recently it has been reported that some ionic liquids play a nucleophilic role, in this work we report for the first time the degradation of organophosphorus pesticides by using an amino acid-based ionic liquid such as Bmim[Ala] as a nucleophile and a bio-based solvent (propylene carbonate) as a reaction medium in combination with microwave heating.

8.
Front Chem ; 8: 583, 2020.
Article in English | MEDLINE | ID: mdl-32754575

ABSTRACT

The mechanism of SNAr reactions between 2-chloro-5-nitropyrimidine with primary and secondary alicyclic amines, respectively, have been studied by kinetic measurements. The kinetic data obtained in aqueous media opens a controversial discussion based on Brönsted-type plots analysis. The first approach based on the kinetic data reveals a non-catalyzed pathway. Then, the subtlety of the mathematical treatment of the kinetic data is discussed over a concerted or stepwise mechanism, respectively.

9.
Int J Mol Sci ; 21(1)2019 Dec 25.
Article in English | MEDLINE | ID: mdl-31881717

ABSTRACT

We designed, synthesized, and evaluated novel 2,6,9-trisubstituted purine derivatives for their prospective role as antitumor compounds. Using simple and efficient methodologies, 31 compounds were obtained. We tested these compounds in vitro to draw conclusions about their cell toxicity on seven cancer cells lines and one non-neoplastic cell line. Structural requirements for antitumor activity on two different cancer cell lines were analyzed with SAR and 3D-QSAR. The 3D-QSAR models showed that steric properties could better explain the cytotoxicity of compounds than electronic properties (70% and 30% of contribution, respectively). From this analysis, we concluded that an arylpiperazinyl system connected at position 6 of the purine ring is beneficial for cytotoxic activity, while the use of bulky systems at position C-2 of the purine is not favorable. Compound 7h was found to be an effective potential agent when compared with a currently marketed drug, cisplatin, in four out of the seven cancer cell lines tested. Compound 7h showed the highest potency, unprecedented selectivity, and complied with all the Lipinski rules. Finally, it was demonstrated that 7h induced apoptosis and caused cell cycle arrest at the S-phase on HL-60 cells. Our study suggests that substitution in the purine core by arylpiperidine moiety is essential to obtain derivatives with potential anticancer activity.


Subject(s)
Antineoplastic Agents/chemical synthesis , Purines/chemistry , Quantitative Structure-Activity Relationship , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Cell Line, Tumor , Crystallography, X-Ray , Drug Screening Assays, Antitumor , Humans , Molecular Conformation , Purines/chemical synthesis , Purines/pharmacology , S Phase Cell Cycle Checkpoints/drug effects
10.
Front Chem ; 6: 509, 2018.
Article in English | MEDLINE | ID: mdl-30406087

ABSTRACT

Nucleophilic aromatic substitution reactions of 4-chloroquinazoline toward aniline and hydrazine were used as a model system to experimentally show that a substrate bearing heteroatoms on the aromatic ring as substituent is able to establish intramolecular hydrogen bond which may be activated by the reaction media and/or the nature of the nucleophile.

11.
Org Biomol Chem ; 16(40): 7446-7453, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30264845

ABSTRACT

The synthesis of a series of ionic liquids using 1-butyl 3-methylimidazolium (Bmim+) as a cation and different amino acids (AA) as anions (Bmim[AA]) is described. These ILs were used for the first time as reaction media to achieve more eco-friendly Paraoxon degradation. The results show that the degradation of Paraoxon in these Bmim[AA]s is accomplished with great efficiency and without an extra nucleophilic agent. Therefore, we propose that all the Bmim[AA]s used in this study have a dual role in the outcome of this reaction; as a nucleophile and a solvent to carry out degradation of the organophosphorous pesticide, Paraoxon. Both kinetics and product distribution results found in this study for Paraoxon degradation turned out to be promising, because this process is achieved in a reaction medium with a better environmental profile.

12.
Front Chem ; 6: 669, 2018.
Article in English | MEDLINE | ID: mdl-30693279

ABSTRACT

An efficient strategy for the degradation of organophosphate pesticide Diazinon was investigated. In this work, ionic liquids, bio-based solvents, and two conventional organic solvents were used as reaction media. Kinetics studies by means of half-life (t1/2,h) were followed by 31P NMR and the products analyzed by GC-MS, HPLC-MS and NMR techniques. These results have shown that t1/2 values in ionic liquids were the lowest and also they were able to activate two electrophilic centers in Diazinon, whilst degradation in bio-based solvents occurred slowly by only an aromatic pathway. In addition, a study to estimate the influence of green activation techniques was carried out by using Ultrasound irradiation and Microwave heating in combination with greener solvents and two conventional organic solvents. Under Microwave heating, faster degradation than under ultrasound irradiation was found. Finally, considering both families of solvent used here and their behavior under green activation techniques, we propose that the more efficient way for degradation of Diazinon with piperidine is by microwave heating using ionic liquids as solvents.

13.
Chem Biol Drug Des ; 91(1): 29-38, 2018 01.
Article in English | MEDLINE | ID: mdl-28643389

ABSTRACT

A combination of three-dimensional quantitative structure-activity relationship (3D-QSAR), and molecular modelling methods were used to understand the potent inhibitory NAD(P)H:quinone oxidoreductase 1 (NQO1) activity of a set of 52 heterocyclic quinones. Molecular docking results indicated that some favourable interactions of key amino acid residues at the binding site of NQO1 with these quinones would be responsible for an improvement of the NQO1 activity of these compounds. The main interactions involved are hydrogen bond of the amino group of residue Tyr128, π-stacking interactions with Phe106 and Phe178, and electrostatic interactions with flavin adenine dinucleotide (FADH) cofactor. Three models were prepared by 3D-QSAR analysis. The models derived from Model I and Model III, shown leave-one-out cross-validation correlation coefficients (q2LOO ) of .75 and .73 as well as conventional correlation coefficients (R2 ) of .93 and .95, respectively. In addition, the external predictive abilities of these models were evaluated using a test set, producing the predicted correlation coefficients (r2pred ) of .76 and .74, respectively. The good concordance between the docking results and 3D-QSAR contour maps provides helpful information about a rational modification of new molecules based in quinone scaffold, in order to design more potent NQO1 inhibitors, which would exhibit highly potent antitumor activity.


Subject(s)
Molecular Docking Simulation , NAD(P)H Dehydrogenase (Quinone)/metabolism , Quantitative Structure-Activity Relationship , Quinones/metabolism , Binding Sites , Computer-Aided Design , Flavin-Adenine Dinucleotide/chemistry , Flavin-Adenine Dinucleotide/metabolism , Humans , Least-Squares Analysis , NAD(P)H Dehydrogenase (Quinone)/antagonists & inhibitors , Protein Structure, Tertiary , Quinones/chemistry , Static Electricity
14.
Eur J Pharm Sci ; 101: 1-10, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28137469

ABSTRACT

The preceding years have brought an exponential increase in our understanding of the endocannabinoid system (ECS), including the knowledge of CB1 and CB2 cannabinoid receptors, endocannabinoids, and the enzymes that synthesize and degrade endocannabinoids. Among these ECS components CB2 receptors have been the subject of considerable attention, primarily due to their promising therapeutic potential to treat numerous pathologies while avoiding the adverse psychotropic effects that can accompany CB1 receptor-based therapies. Recently, our research group has reported a new series of non-cytotoxic benzo[d]imidazoles and benzo[b]thiophenes displaying high CB2/CB1 selectivity index. In order to investigate the structural requirements for CB2 ligands and to derive a predictive model that can be used for the design of novel selective CB2 ligands, a three-dimensional quantitative structure-activity relationship (3D-QSAR) study was performed on the above mentioned chemical series employing comparative molecular field analysis (CoMFA) and comparative molecular similarity index analysis (CoMSIA) techniques. The CoMFA and CoMSIA models displayed high external predictability (rpred2 0.919 and 0.908) and good statistical robustness. Valuable information regarding the steric, electrostatic and hydrophobic properties of the molecules was obtained, and several modifications around both heterocycles were evaluated with the aim to generate new promising series of benzo[d]imidazoles and benzo[b]thiophenes derivatives displaying high CB2 selectivity and low toxicity.


Subject(s)
Benzimidazoles/chemistry , Receptor, Cannabinoid, CB2/chemistry , Thiophenes/chemistry , Cannabinoids/chemistry , Hydrophobic and Hydrophilic Interactions , Ligands , Models, Molecular , Quantitative Structure-Activity Relationship , Receptor, Cannabinoid, CB1/chemistry , Static Electricity
15.
J Biomol Struct Dyn ; 35(8): 1785-1803, 2017 Jun.
Article in English | MEDLINE | ID: mdl-27232454

ABSTRACT

A set of aryloxy-quinones, previously synthesized and evaluated against Trypanosoma cruzi epimastigotes cultures, were found more potent and selective than nifurtimox. One of the possible mechanisms of the trypanocidal activity of these quinones could be inhibition of trypanothione reductase (TR). Considering that glutathione reductase (GR) is the equivalent of TR in humans, biochemical, kinetic, and molecular docking studies in TR and GR were envisaged and compared with the trypanocidal and cytotoxic data of a set of aryloxy-quinones. Biochemical assays indicated that three naphthoquinones (Nq-h, Nq-g, and Nq-d) selectively inhibit TR and the TR kinetic analyses indicated that Nq-h inhibit TR in a noncompetitive mechanism. Molecular dockings were performed in TR and GR in the following three putative binding sites: the catalytic site, the dimer interface, and the nicotinamide adenine dinucleotide phosphate-binding site. In TR and GR, the aryloxy-quinones were found to exhibit high affinity for a site near it cognate-binding site in a place in which the noncompetitive kinetics could be justified. Taking as examples the three compounds with TR specificity (TRS) (Nq-h, Nq-g, and Nq-d), the presence of a network of contacts with the quinonic ring sustained by the triad of Lys62, Met400', Ser464' residues, seems to contribute hardly to the TRS. Compound Nq-b, a naphthoquinone with nitrophenoxy substituent, proved to be the best scaffold for the design of trypanocidal compounds with low toxicity. However, the compound displayed only a poor and non-selective effect toward TR indicating that TR inhibition is not the main reason for the antiparasitic activity of the aryloxy-quinones.


Subject(s)
Enzyme Inhibitors/chemistry , NADH, NADPH Oxidoreductases/chemistry , Naphthoquinones/chemistry , Protozoan Proteins/chemistry , Trypanocidal Agents/chemistry , Trypanosoma cruzi/drug effects , Amino Acid Motifs , Binding Sites , Crystallography, X-Ray , Enzyme Inhibitors/pharmacology , Glutathione Reductase/antagonists & inhibitors , Glutathione Reductase/chemistry , Glutathione Reductase/metabolism , Humans , Kinetics , Molecular Docking Simulation , Molecular Dynamics Simulation , NADH, NADPH Oxidoreductases/antagonists & inhibitors , NADH, NADPH Oxidoreductases/metabolism , NADP/chemistry , NADP/metabolism , Naphthoquinones/pharmacology , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Protein Multimerization , Protozoan Proteins/antagonists & inhibitors , Protozoan Proteins/metabolism , Substrate Specificity , Thermodynamics , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/enzymology , Trypanosoma cruzi/growth & development
16.
J Chem Theory Comput ; 12(10): 4735-4742, 2016 Oct 11.
Article in English | MEDLINE | ID: mdl-27640742

ABSTRACT

Thermodynamics and the solvent role in the acceleration of the Diels-Alder reaction between cyclopentadiene (CPD) and methyl vinyl ketone (MVK) have been revisited. In this work we use an ab initio hybrid QM/MM-MD scheme combined with multiple steered molecular dynamics to extract the free energy pofile in water and methanol using the bidirectional Minh-Adib estimator. We obtain 18.7 kcal mol-1 and 20.8 kcal mol-1 free energy barrier for the reaction in water and methanol, respectively. This methodology reproduces experimental values with an absolute error of about 0.8 kcal mol-1. The experimental difference between the activation free-energy barriers of water and methanol is also reproduced with an absolute error of about 0.1 kcal mol-1. We explore the charge transfer evolution along reaction coordinates to characterize the electronic behavior for this reaction. It is shown that the solvent molecules around the reaction system produce a global polarization along the reaction coordinate which is consistent with the solvent polarity. The results highlight the role of hydrogen bonding formed in the transition state to stabilize the system charge reorganization in the reaction process.

17.
Chemistry ; 22(37): 13347-51, 2016 Sep 05.
Article in English | MEDLINE | ID: mdl-27506894

ABSTRACT

We report an experimental study on the effect of solvents on the model SN Ar reaction between 1-chloro-2,4-dinitrobenzene and morpholine in a series of pure ionic liquids (IL). A significant catalytic effect is observed with reference to the same reaction run in water, acetonitrile, and other conventional solvents. The series of IL considered include the anions, NTf2 (-) , DCN(-) , SCN(-) , CF3 SO3 (-) , PF6 (-) , and FAP(-) with the series of cations 1-butyl-3-methyl-imidazolium ([BMIM](+) ), 1-ethyl-3-methyl-imidazolium ([EMIM](+) ), 1-butyl-2,3-dimethyl-imidazolium ([BM2 IM](+) ), and 1-butyl-1-methyl-pyrrolidinium ([BMPyr](+) ). The observed solvent effects can be attributed to an "anion effect". The anion effect appears related to the anion size (polarizability) and their hydrogen-bonding (HB) abilities to the substrate. These results have been confirmed by performing a comparison of the rate constants with Gutmann's donicity numbers (DNs). The good correlation between rate constants and DN emphasizes the major role of charge transfer from the anion to the substrate.

18.
Molecules ; 20(4): 6808-26, 2015 Apr 15.
Article in English | MEDLINE | ID: mdl-25884555

ABSTRACT

A series of 2,6,9-trisubstituted purine derivatives have been synthesized and investigated for their potential role as antitumor agents. Twelve compounds were obtained by a three step synthetic procedure using microwave irradiation in a pivotal step. All compounds were evaluated in vitro to determine their potential effect on cell toxicity by the MTT method and flow cytometry analysis on four cancer cells lines and Vero cells. Three out of twelve compounds were found to be promising agents compared to a known and effective anticancer drug, etoposide, in three out of four cancer cell lines assayed with considerable selectivity. Preliminary flow cytometry data suggests that compounds mentioned above induce apoptosis on these cells. The main structural requirements for their activity for each cancer cell line were characterized with a preliminary pharmacophore model, which identified aromatic centers, hydrogen acceptor/donor center and a hydrophobic area. These features were consistent with the cytotoxic activity of the assayed compounds.


Subject(s)
Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Models, Molecular , Purines/chemistry , Purines/pharmacology , Animals , Antineoplastic Agents/chemical synthesis , Cell Line, Tumor , Chlorocebus aethiops , Humans , Molecular Structure , Purines/chemical synthesis , Structure-Activity Relationship , Vero Cells
19.
Arch Pharm (Weinheim) ; 348(2): 81-8, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25641513

ABSTRACT

A series of N-acyl-2,5-dimethoxyphenyl-1H-benzimidazoles were designed based on a CoMFA model for cannabinoid receptor type 1 (CB1) ligands. Compounds were synthesized and radioligand binding affinity assays were performed. Eight novel benzimidazoles exhibited affinity for the CB1 receptor in the nanomolar range, and the most promising derivative compound 5 displayed a K(i) value of 1.2 nM when compared to CP55,940. These results confirm our previously reported QSAR model on benzimidazole derivatives, providing new information for the development of small molecules with high CB1 affinity.


Subject(s)
Benzimidazoles/chemical synthesis , Benzimidazoles/metabolism , Cannabinoid Receptor Agonists/chemical synthesis , Cannabinoid Receptor Agonists/metabolism , Drug Design , Receptor, Cannabinoid, CB1/metabolism , Benzimidazoles/pharmacology , Binding Sites , Binding, Competitive , Cannabinoid Receptor Agonists/pharmacology , Computer-Aided Design , Cyclohexanols/metabolism , Ligands , Molecular Docking Simulation , Molecular Structure , Protein Binding , Protein Conformation , Quantitative Structure-Activity Relationship , Receptor, Cannabinoid, CB1/agonists , Receptor, Cannabinoid, CB1/chemistry
20.
Bioorg Med Chem ; 22(17): 4609-20, 2014 Sep 01.
Article in English | MEDLINE | ID: mdl-25127463

ABSTRACT

A series of new 2-aminonaphthoquinones and related compounds were synthesized and evaluated in vitro as trypanocidal and cytotoxic agents. Some tested compounds inhibited epimastigote growth and trypomastigote viability. Several compounds showed similar or higher activity and selectivity as compared with current trypanocidal drug, nifurtimox. Compound 4l exhibit higher selectivity than nifurtimox against Trypanosoma cruzi in comparison with Vero cells. Some of the synthesized quinones were tested against cancer cells and normal fibroblasts, showing that certain chemical modifications on the naphthoquinone moiety induce and excellent increase the selectivity index of the cytotoxicity (4g and 10). The results presented here show that the anti-T. cruzi activity of 2-aminonaphthoquinones derivatives can be improved by the replacement of the benzene ring by a pyridine moiety. Interestingly, the presence of a chlorine atom at C-3 and a highly lipophilic alkyl group or aromatic ring are newly observed elements that should lead to the discovery of more selective cytotoxic and trypanocidal compounds.


Subject(s)
Aniline Compounds/pharmacology , Fibroblasts/drug effects , Naphthoquinones/pharmacology , Trypanocidal Agents/pharmacology , Trypanosoma cruzi/drug effects , Aniline Compounds/chemical synthesis , Aniline Compounds/chemistry , Animals , Cell Line, Tumor , Cell Proliferation/drug effects , Chlorocebus aethiops , Dose-Response Relationship, Drug , Humans , MCF-7 Cells , Molecular Structure , Naphthoquinones/chemical synthesis , Naphthoquinones/chemistry , Parasitic Sensitivity Tests , Structure-Activity Relationship , Trypanocidal Agents/chemical synthesis , Trypanocidal Agents/chemistry , Trypanocidal Agents/toxicity , Vero Cells
SELECTION OF CITATIONS
SEARCH DETAIL
...