Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters











Database
Language
Publication year range
1.
J Virol ; 87(16): 8962-70, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23740997

ABSTRACT

The human parainfluenza virus (hPIV) hemagglutinin-neuraminidase (HN) protein binds (H) oligosaccharide receptors that contain N-acetylneuraminic acid (Neu5Ac) and cleaves (N) Neu5Ac from these oligosaccharides. In order to determine if one of HN's two functions is predominant, we measured the affinity of H for its ligands by a solid-phase binding assay with two glycoprotein substrates and by surface plasmon resonance with three monovalent glycans. We compared the dissociation constant (Kd) values from these experiments with previously determined Michaelis-Menten constants (Kms) for the enzyme activity. We found that glycoprotein substrates and monovalent glycans containing Neu5Acα2-3Galß1-4GlcNAc bind HN with Kd values in the 10 to 100 µM range. Km values for HN were previously determined to be on the order of 1 mM (M. M. Tappert, D. F. Smith, and G. M. Air, J. Virol. 85:12146-12159, 2011). A Km value greater than the Kd value indicates that cleavage occurs faster than the dissociation of binding and will dominate under N-permissive conditions. We propose, therefore, that HN is a neuraminidase that can hold its substrate long enough to act as a binding protein. The N activity can therefore regulate binding by reducing virus-receptor interactions when the concentration of receptor is high.


Subject(s)
HN Protein/metabolism , Parainfluenza Virus 1, Human/enzymology , Receptors, Virus/metabolism , Humans , Hydrolysis , Kinetics , Protein Binding , Surface Plasmon Resonance
2.
J Biol Chem ; 287(53): 44784-99, 2012 Dec 28.
Article in English | MEDLINE | ID: mdl-23115247

ABSTRACT

Human milk contains a large diversity of free glycans beyond lactose, but their functions are not well understood. To explore their functional recognition, here we describe a shotgun glycan microarray prepared from isolated human milk glycans (HMGs), and our studies on their recognition by viruses, antibodies, and glycan-binding proteins (GBPs), including lectins. The total neutral and sialylated HMGs were derivatized with a bifunctional fluorescent tag, separated by multidimensional HPLC, and archived in a tagged glycan library, which was then used to print a shotgun glycan microarray (SGM). This SGM was first interrogated with well defined GBPs and antibodies. These data demonstrated both the utility of the array and provided preliminary structural information (metadata) about this complex glycome. Anti-TRA-1 antibodies that recognize human pluripotent stem cells specifically recognized several HMGs that were then further structurally defined as novel epitopes for these antibodies. Human influenza viruses and Parvovirus Minute Viruses of Mice also specifically recognized several HMGs. For glycan sequencing, we used a novel approach termed metadata-assisted glycan sequencing (MAGS), in which we combine information from analyses of glycans by mass spectrometry with glycan interactions with defined GBPs and antibodies before and after exoglycosidase treatments on the microarray. Together, these results provide novel insights into diverse recognition functions of HMGs and show the utility of the SGM approach and MAGS as resources for defining novel glycan recognition by GBPs, antibodies, and pathogens.


Subject(s)
Biomarkers/chemistry , Glycomics , Milk, Human/chemistry , Polysaccharides/chemistry , Receptors, Virus/analysis , Animals , Carbohydrate Sequence , Cell Line , Embryonic Stem Cells/metabolism , Humans , Mice , Milk, Human/metabolism , Molecular Sequence Data , Polysaccharides/metabolism , Receptors, Virus/genetics , Receptors, Virus/metabolism
3.
J Virol ; 85(23): 12146-59, 2011 Dec.
Article in English | MEDLINE | ID: mdl-21917945

ABSTRACT

The hemagglutinin-neuraminidase (HN) protein of human parainfluenza viruses (hPIVs) both binds (H) and cleaves (N) oligosaccharides that contain N-acetylneuraminic acid (Neu5Ac). H is thought to correspond to receptor binding and N to receptor-destroying activity. At present, N's role in infection remains unclear: does it destroy only receptors, or are there other targets? We previously demonstrated that hPIV1 and 3 HNs bind to oligosaccharides containing the motif Neu5Acα2-3Galß1-4GlcNAc (M. Amonsen, D. F. Smith, R. D. Cummings, and G. M. Air, J. Virol. 81:8341-8345, 2007). In the present study, we tested the binding specificity of hPIV2 on the Consortium for Functional Glycomics' glycan array and found that hPIV2 binds to oligosaccharides containing the same motif. We determined the specificities of N on red blood cells, soluble small-molecule and glycoprotein substrates, and the glycan array and compared them to the specificities of H. hPIV2 and -3, but not hPIV1, cleaved their ligands on red blood cells. hPIV1, -2, and -3 cleaved their NeuAcα2-3 ligands on the glycan array; hPIV2 and -3 also cleaved NeuAcα2-6 ligands bound by influenza A virus. While all three HNs exhibited similar affinities for all cleavable soluble substrates, their activities were 5- to 10-fold higher on small molecules than on glycoproteins. In addition, some soluble glycoproteins were not cleaved, despite containing oligosaccharides that were cleaved on the glycan array. We conclude that the susceptibility of an oligosaccharide substrate to N increases when the substrate is fixed to a surface. These findings suggest that HN may undergo a conformational change that activates N upon receptor binding at a cell surface.


Subject(s)
Hemagglutinins/metabolism , Neuraminidase/metabolism , Oligosaccharides/metabolism , Parainfluenza Virus 1, Human/metabolism , Parainfluenza Virus 2, Human/metabolism , Parainfluenza Virus 3, Human/metabolism , Receptors, Cell Surface/metabolism , Amino Acid Sequence , Animals , Cell Membrane/metabolism , Chickens , Erythrocytes/metabolism , Glycosylation , Hemagglutination Tests , Humans , Microarray Analysis , Molecular Sequence Data , Parainfluenza Virus 1, Human/isolation & purification , Parainfluenza Virus 2, Human/isolation & purification , Parainfluenza Virus 3, Human/isolation & purification , Phylogeny , Polysaccharides/metabolism , Receptors, Virus/metabolism , Respirovirus Infections/genetics , Respirovirus Infections/metabolism , Respirovirus Infections/virology , Sequence Homology, Amino Acid , Turkey
4.
J Biol Chem ; 286(36): 31610-22, 2011 Sep 09.
Article in English | MEDLINE | ID: mdl-21757734

ABSTRACT

Many glycan-binding proteins in animals and pathogens recognize sialic acid or its modified forms, but their molecular recognition is poorly understood. Here we describe studies on sialic acid recognition using a novel sialylated glycan microarray containing modified sialic acids presented on different glycan backbones. Glycans terminating in ß-linked galactose at the non-reducing end and with an alkylamine-containing fluorophore at the reducing end were sialylated by a one-pot three-enzyme system to generate α2-3- and α2-6-linked sialyl glycans with 16 modified sialic acids. The resulting 77 sialyl glycans were purified and quantified, characterized by mass spectrometry, covalently printed on activated slides, and interrogated with a number of key sialic acid-binding proteins and viruses. Sialic acid recognition by the sialic acid-binding lectins Sambucus nigra agglutinin and Maackia amurensis lectin-I, which are routinely used for detecting α2-6- and α2-3-linked sialic acids, are affected by sialic acid modifications, and both lectins bind glycans terminating with 2-keto-3-deoxy-D-glycero-D-galactonononic acid (Kdn) and Kdn derivatives stronger than the derivatives of more common N-acetylneuraminic acid (Neu5Ac) and N-glycolylneuraminic acid (Neu5Gc). Three human parainfluenza viruses bind to glycans terminating with Neu5Ac or Neu5Gc and some of their derivatives but not to Kdn and its derivatives. Influenza A virus also does not bind glycans terminating in Kdn or Kdn derivatives. An especially novel aspect of human influenza A virus binding is its ability to equivalently recognize glycans terminated with either α2-6-linked Neu5Ac9Lt or α2-6-linked Neu5Ac. Our results demonstrate the utility of this sialylated glycan microarray to investigate the biological importance of modified sialic acids in protein-glycan interactions.


Subject(s)
Polysaccharides/metabolism , Protein Array Analysis , Proteins/metabolism , Sialic Acids/metabolism , Viruses/metabolism , Binding Sites , Humans , Influenza A virus , Lectins/metabolism , Respirovirus , Sialic Acids/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL