Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 163
Filter
1.
J Cell Biol ; 223(5)2024 May 06.
Article in English | MEDLINE | ID: mdl-38451221

ABSTRACT

Polycomb repressive complexes regulate developmental gene programs, promote DNA damage repair, and mediate pericentromeric satellite repeat repression. Expression of pericentromeric satellite repeats has been implicated in several cancers and diseases, including facioscapulohumeral dystrophy (FSHD). Here, we show that DUX4-mediated transcription of HSATII regions causes nuclear foci formation of KDM2A/B-PRC1 complexes, resulting in a global loss of PRC1-mediated monoubiquitination of histone H2A. Loss of PRC1-ubiquitin signaling severely impacts DNA damage response. Our data implicate DUX4-activation of HSATII and sequestration of KDM2A/B-PRC1 complexes as a mechanism of regulating epigenetic and DNA repair pathways.


Subject(s)
DNA Repair , Homeodomain Proteins , Multiprotein Complexes , Cell Nucleus/genetics , Epigenomics , Histones/genetics , Humans , F-Box Proteins/metabolism , Jumonji Domain-Containing Histone Demethylases/metabolism , Cell Cycle Proteins/metabolism , Homeodomain Proteins/metabolism , Multiprotein Complexes/metabolism
2.
Hum Mol Genet ; 33(8): 698-708, 2024 Apr 08.
Article in English | MEDLINE | ID: mdl-38268317

ABSTRACT

Identifying the aberrant expression of DUX4 in skeletal muscle as the cause of facioscapulohumeral dystrophy (FSHD) has led to rational therapeutic development and clinical trials. Several studies support the use of MRI characteristics and the expression of DUX4-regulated genes in muscle biopsies as biomarkers of FSHD disease activity and progression. We performed lower-extremity MRI and muscle biopsies in the mid-portion of the tibialis anterior (TA) muscles bilaterally in FSHD subjects and validated our prior reports of the strong association between MRI characteristics and expression of genes regulated by DUX4 and other gene categories associated with FSHD disease activity. We further show that measurements of normalized fat content in the entire TA muscle strongly predict molecular signatures in the mid-portion of the TA, indicating that regional biopsies can accurately measure progression in the whole muscle and providing a strong basis for inclusion of MRI and molecular biomarkers in clinical trial design. An unanticipated finding was the strong correlations of molecular signatures in the bilateral comparisons, including markers of B-cells and other immune cell populations, suggesting that a systemic immune cell infiltration of skeletal muscle might have a role in disease progression.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Humans , Muscular Dystrophy, Facioscapulohumeral/diagnostic imaging , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Homeodomain Proteins/genetics , Clinical Trials as Topic , Muscle, Skeletal/metabolism , Magnetic Resonance Imaging , Biomarkers/metabolism , Disease Progression
3.
Hum Mol Genet ; 33(3): 284-298, 2024 Jan 20.
Article in English | MEDLINE | ID: mdl-37934801

ABSTRACT

The sporadic nature of DUX4 expression in FSHD muscle challenges comparative transcriptome analyses between FSHD and control samples. A variety of DUX4 and FSHD-associated transcriptional changes have been identified, but bulk RNA-seq strategies prohibit comprehensive analysis of their spatiotemporal relation, interdependence and role in the disease process. In this study, we used single-nucleus RNA-sequencing of nuclei isolated from patient- and control-derived multinucleated primary myotubes to investigate the cellular heterogeneity in FSHD. Taking advantage of the increased resolution in snRNA-sequencing of fully differentiated myotubes, two distinct populations of DUX4-affected nuclei could be defined by their transcriptional profiles. Our data provides insights into the differences between these two populations and suggests heterogeneity in two well-known FSHD-associated transcriptional aberrations: increased oxidative stress and inhibition of myogenic differentiation. Additionally, we provide evidence that DUX4-affected nuclei share transcriptome features with early embryonic cells beyond the well-described cleavage stage, progressing into the 8-cell and blastocyst stages. Altogether, our data suggests that the FSHD transcriptional profile is defined by a mixture of individual and sometimes mutually exclusive DUX4-induced responses and cellular state-dependent downstream effects.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Humans , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Transcriptome/genetics , Homeodomain Proteins/metabolism , RNA, Small Nuclear/genetics , RNA, Small Nuclear/metabolism , Oxidative Stress/genetics , Apoptosis , Muscle, Skeletal/metabolism , Gene Expression Regulation/genetics
4.
PLoS Biol ; 21(9): e3002317, 2023 09.
Article in English | MEDLINE | ID: mdl-37747887

ABSTRACT

Translational control is critical for cell fate transitions during development, lineage specification, and tumorigenesis. Here, we show that the transcription factor double homeobox protein 4 (DUX4), and its previously characterized transcriptional program, broadly regulates translation to change the cellular proteome. DUX4 is a key regulator of zygotic genome activation in human embryos, whereas misexpression of DUX4 causes facioscapulohumeral muscular dystrophy (FSHD) and is associated with MHC-I suppression and immune evasion in cancer. We report that translation initiation and elongation factors are disrupted downstream of DUX4 expression in human myoblasts. Genome-wide translation profiling identified mRNAs susceptible to DUX4-induced translation inhibition, including those encoding antigen presentation factors and muscle lineage proteins, while DUX4-induced mRNAs were robustly translated. Endogenous expression of DUX4 in human FSHD myotubes and cancer cell lines also correlated with reduced protein synthesis and MHC-I presentation. Our findings reveal that DUX4 orchestrates cell state conversion by suppressing the cellular proteome while maintaining translation of DUX4-induced mRNAs to promote an early developmental program.


Subject(s)
Homeodomain Proteins , Muscular Dystrophy, Facioscapulohumeral , Transcription Factors , Humans , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , Proteome/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism
5.
Cell Rep ; 42(9): 113114, 2023 09 26.
Article in English | MEDLINE | ID: mdl-37691147

ABSTRACT

The transcription factor DUX4 regulates a portion of the zygotic gene activation (ZGA) program in the early embryo. Many cancers express DUX4 but it is unknown whether this generates cells similar to early embryonic stem cells. Here we identified cancer cell lines that express DUX4 and showed that DUX4 is transiently expressed in a small subset of the cells. DUX4 expression activates the DUX4-regulated ZGA transcriptional program, the subsequent 8C-like program, and markers of early embryonic lineages, while suppressing steady-state and interferon-induced MHC class I expression. Although DUX4 was expressed in a small number of cells under standard culture conditions, DNA damage or changes in growth conditions increased the fraction of cells expressing DUX4 and its downstream programs. Our demonstration that transient expression of endogenous DUX4 in cancer cells induces a metastable early embryonic stem cell program and suppresses antigen presentation has implications for cancer growth, progression, and immune evasion.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Neoplasms , Humans , Cell Line , Genes, Homeobox , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Neoplasms/genetics , Neoplasms/metabolism , Transcription Factors/metabolism , Zygote/metabolism
6.
Commun Biol ; 6(1): 677, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37380887

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is caused by the epigenetic derepression of the 4q-linked D4Z4 macrosatellite repeat resulting in inappropriate expression of the D4Z4 repeat-encoded DUX4 gene in skeletal muscle. In 5% of FSHD cases, D4Z4 chromatin relaxation is due to germline mutations in one of the chromatin modifiers SMCHD1, DNMT3B or LRIF1. The mechanism of SMCHD1- and LRIF1-mediated D4Z4 repression is not clear. We show that somatic loss-of-function of either SMCHD1 or LRIF1 does not result in D4Z4 chromatin changes and that SMCHD1 and LRIF1 form an auxiliary layer of D4Z4 repressive mechanisms. We uncover that SMCHD1, together with the long isoform of LRIF1, binds to the LRIF1 promoter and silences LRIF1 expression. The interdependency of SMCHD1 and LRIF1 binding differs between D4Z4 and the LRIF1 promoter, and both loci show different transcriptional responses to either early developmentally or somatically perturbed chromatin function of SMCHD1 and LRIF1.


Subject(s)
Cell Cycle Proteins , Chromosomal Proteins, Non-Histone , Muscular Dystrophy, Facioscapulohumeral , Humans , Chromatin/genetics , Chromosomal Proteins, Non-Histone/genetics , Epigenomics , Genes, Homeobox , Muscle, Skeletal , Muscular Dystrophy, Facioscapulohumeral/genetics , Cell Cycle Proteins/genetics
7.
Elife ; 122023 04 24.
Article in English | MEDLINE | ID: mdl-37092726

ABSTRACT

DUX4 activates the first wave of zygotic gene expression in the early embryo. Mis-expression of DUX4 in skeletal muscle causes facioscapulohumeral dystrophy (FSHD), whereas expression in cancers suppresses IFNγ induction of major histocompatibility complex class I (MHC class I) and contributes to immune evasion. We show that the DUX4 protein interacts with STAT1 and broadly suppresses expression of IFNγ-stimulated genes by decreasing bound STAT1 and Pol-II recruitment. Transcriptional suppression of interferon-stimulated genes (ISGs) requires conserved (L)LxxL(L) motifs in the carboxyterminal region of DUX4 and phosphorylation of STAT1 Y701 enhances interaction with DUX4. Consistent with these findings, expression of endogenous DUX4 in FSHD muscle cells and the CIC-DUX4 fusion containing the DUX4 CTD in a sarcoma cell line inhibit IFNγ induction of ISGs. Mouse Dux similarly interacted with STAT1 and suppressed IFNγ induction of ISGs. These findings identify an evolved role of the DUXC family in modulating immune signaling pathways with implications for development, cancers, and FSHD.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Animals , Humans , Mice , Gene Expression , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Interferons/metabolism , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , STAT1 Transcription Factor/genetics , STAT1 Transcription Factor/metabolism
8.
bioRxiv ; 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36865168

ABSTRACT

Identifying the aberrant expression of DUX4 in skeletal muscle as the cause of facioscapulohumeral dystrophy (FSHD) has led to rational therapeutic development and clinical trials. Several studies support the use of MRI characteristics and the expression of DUX4-regulated genes in muscle biopsies as biomarkers of FSHD disease activity and progression, but reproducibility across studies needs further validation. We performed lower-extremity MRI and muscle biopsies in the mid-portion of the tibialis anterior (TA) muscles bilaterally in FSHD subjects and validated our prior reports of the strong association between MRI characteristics and expression of genes regulated by DUX4 and other gene categories associated with FSHD disease activity. We further show that measurements of normalized fat content in the entire TA muscle strongly predict molecular signatures in the mid-portion of the TA. Together with moderate-to-strong correlations of gene signatures and MRI characteristics between the TA muscles bilaterally, these results suggest a whole muscle model of disease progression and provide a strong basis for inclusion of MRI and molecular biomarkers in clinical trial design.

9.
Hum Mol Genet ; 32(11): 1864-1874, 2023 05 18.
Article in English | MEDLINE | ID: mdl-36728804

ABSTRACT

Human DUX4 and its mouse ortholog Dux are normally expressed in the early embryo-the 4-cell or 2-cell cleavage stage embryo, respectively-and activate a portion of the first wave of zygotic gene expression. DUX4 is epigenetically suppressed in nearly all somatic tissue, whereas facioscapulohumeral dystrophy (FSHD)-causing mutations result in its aberrant expression in skeletal muscle, transcriptional activation of the early embryonic program and subsequent muscle pathology. Although DUX4 and Dux both activate an early totipotent transcriptional program, divergence of their DNA binding domains limits the use of DUX4 expressed in mice as a preclinical model for FSHD. In this study, we identify the porcine DUXC messenger ribonucleic acid expressed in early development and show that both pig DUXC and human DUX4 robustly activate a highly similar early embryonic program in pig muscle cells. These results support further investigation of pig preclinical models for FSHD.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Humans , Animals , Mice , Swine , Muscular Dystrophy, Facioscapulohumeral/metabolism , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Muscle Cells/metabolism , Muscle, Skeletal/metabolism
10.
Nat Rev Neurol ; 19(2): 91-108, 2023 02.
Article in English | MEDLINE | ID: mdl-36627512

ABSTRACT

Advances in the molecular understanding of facioscapulohumeral muscular dystrophy (FSHD) have revealed that FSHD results from epigenetic de-repression of the DUX4 gene in skeletal muscle, which encodes a transcription factor that is active in early embryonic development but is normally silenced in almost all somatic tissues. These advances also led to the identification of targets for disease-altering therapies for FSHD, as well as an improved understanding of the molecular mechanism of the disease and factors that influence its progression. Together, these developments led the FSHD research community to shift its focus towards the development of disease-modifying treatments for FSHD. This Review presents advances in the molecular and clinical understanding of FSHD, discusses the potential targeted therapies that are currently being explored, some of which are already in clinical trials, and describes progress in the development of FSHD-specific outcome measures and assessment tools for use in future clinical trials.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Humans , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/therapy , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Muscle, Skeletal/metabolism , Gene Expression Regulation
12.
Nat Cell Biol ; 24(4): 538-553, 2022 04.
Article in English | MEDLINE | ID: mdl-35411081

ABSTRACT

Skeletal muscle has long been recognized as an inhospitable site for disseminated tumour cells (DTCs). Yet its antimetastatic nature has eluded a thorough mechanistic examination. Here, we show that DTCs traffic to and persist within skeletal muscle in mice and in humans, which raises the question of how this tissue suppresses colonization. Results from mouse and organotypic culture models along with metabolomic profiling suggested that skeletal muscle imposes a sustained oxidative stress on DTCs that impairs their proliferation. Functional studies demonstrated that disrupting reduction-oxidation homeostasis via chemogenetic induction of reactive oxygen species slowed proliferation in a more fertile organ: the lung. Conversely, enhancement of the antioxidant potential of tumour cells through ectopic expression of catalase in the tumour or host mitochondria allowed robust colonization of skeletal muscle. These findings reveal a profound metabolic bottleneck imposed on DTCs and sustained by skeletal muscle. A thorough understanding of this biology could reveal previously undocumented DTC vulnerabilities that can be exploited to prevent metastasis in other more susceptible tissues.


Subject(s)
Neoplasms , Oxidative Stress , Animals , Mice , Muscle, Skeletal/metabolism , Neoplasms/metabolism , Oxidation-Reduction , Oxidative Stress/physiology , Reactive Oxygen Species/metabolism
13.
Sci Rep ; 12(1): 1426, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082321

ABSTRACT

With several therapeutic strategies for facioscapulohumeral muscular dystrophy (FSHD) entering clinical testing, outcome measures are becoming increasingly important. Considering the spatiotemporal nature of FSHD disease activity, clinical trials would benefit from non-invasive imaging-based biomarkers that can predict FSHD-associated transcriptome changes. This study investigated two FSHD-associated transcriptome signatures (DUX4 and PAX7 signatures) in FSHD skeletal muscle biopsies, and tested their correlation with a variety of disease-associated factors, including Ricci clinical severity score, disease duration, D4Z4 repeat size, muscle pathology scorings and functional outcome measures. It establishes that DUX4 and PAX7 signatures both show a sporadic expression pattern in FSHD-affected biopsies, possibly marking different stages of disease. This study analyzed two imaging-based biomarkers-Turbo Inversion Recovery Magnitude (TIRM) hyperintensity and fat fraction-and provides insights into their predictive power as non-invasive biomarkers for FSHD signature detection in clinical trials. Further insights in the heterogeneity of-and correlation between-imaging biomarkers and molecular biomarkers, as provided in this study, will provide important guidance to clinical trial design in FSHD. Finally, this study investigated the role of infiltrating non-muscle cell types in FSHD signature expression and detected potential distinct roles for two fibro-adipogenic progenitor subtypes in FSHD.


Subject(s)
Homeodomain Proteins/genetics , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , PAX7 Transcription Factor/genetics , Transcriptome , Biomarkers/metabolism , Biopsy , Case-Control Studies , Female , Gene Expression Profiling , Gene Expression Regulation , Homeodomain Proteins/metabolism , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Muscle, Skeletal/diagnostic imaging , Muscle, Skeletal/pathology , Muscular Dystrophy, Facioscapulohumeral/diagnostic imaging , Muscular Dystrophy, Facioscapulohumeral/metabolism , Muscular Dystrophy, Facioscapulohumeral/pathology , PAX7 Transcription Factor/metabolism , Severity of Illness Index , Stem Cells/metabolism , Stem Cells/pathology
14.
J Med Genet ; 59(2): 180-188, 2022 02.
Article in English | MEDLINE | ID: mdl-33436523

ABSTRACT

BACKGROUND: Facioscapulohumeral dystrophy (FSHD) is an inherited muscular dystrophy clinically characterised by muscle weakness starting with the facial and upper extremity muscles. A disease model has been developed that postulates that failure in somatic repression of the transcription factor DUX4 embedded in the D4Z4 repeat on chromosome 4q causes FSHD. However, due to the position of the D4Z4 repeat close to the telomere and the complex genetic and epigenetic aetiology of FSHD, there is ongoing debate about the transcriptional deregulation of closely linked genes and their involvement in FSHD. METHOD: Detailed genetic characterisation and gene expression analysis of patients with clinically confirmed FSHD and control individuals. RESULTS: Identification of two FSHD families in which the disease is caused by repeat contraction and DUX4 expression from chromosome 10 due to a de novo D4Z4 repeat exchange between chromosomes 4 and 10. We show that the genetic lesion causal to FSHD in these families is physically separated from other candidate genes on chromosome 4. We demonstrate that muscle cell cultures from affected family members exhibit the characteristic molecular features of FSHD, including DUX4 and DUX4 target gene expression, without showing evidence for transcriptional deregulation of other chromosome 4-specific candidate genes. CONCLUSION: This study shows that in rare situations, FSHD can occur on chromosome 10 due to an interchromosomal rearrangement with the FSHD locus on chromosome 4q. These findings provide further evidence that DUX4 derepression is the dominant disease pathway for FSHD. Hence, therapeutic strategies should focus on DUX4 as the primary target.


Subject(s)
Chromosomes, Human, Pair 10 , Homeodomain Proteins/genetics , Muscular Dystrophy, Facioscapulohumeral/genetics , Adult , Cells, Cultured , Chromosome Breakpoints , Chromosomes, Human, Pair 4 , Female , Genetic Association Studies , Humans , Male , Pedigree , Repetitive Sequences, Nucleic Acid , Transcriptome
15.
Hum Mol Genet ; 31(11): 1821-1829, 2022 06 04.
Article in English | MEDLINE | ID: mdl-34919696

ABSTRACT

Advances in understanding the pathophysiology of facioscapulohumeral dystrophy (FSHD) have led to several therapeutic approaches entering clinical trials and an increased need to develop biomarkers of disease activity and progression. Multiple prior studies have shown early elevation of RNAs encoding components of the complement pathways and relatively widespread activated complement complexes by immunodetection in FSHD muscle. The current study tested plasma from two independent cohorts of FSHD and control subjects and found elevated complement components in both FSHD cohorts. Combining subjects from both cohorts identified complement factors that best distinguished FSHD and controls. Within the FSHD group, a subset of subjects showed elevation in multiple complement components. Together these findings suggest the need for future studies to determine whether measurements of complement activation can be used as a non-invasive measurement of FSHD disease activity, progression and/or response to therapies. In addition, with the ongoing expansion of complement therapeutic approaches, consideration for precision-based targeting of this pathway is appropriate.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Biomarkers , Humans , Longitudinal Studies , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics
16.
Hum Mol Genet ; 31(10): 1694-1704, 2022 05 19.
Article in English | MEDLINE | ID: mdl-34888646

ABSTRACT

Mis-expression of DUX4 in skeletal muscle causes facioscapulohumeral muscular dystrophy (FSHD). Human DUX4 and mouse Dux are retrogenes derived from retrotransposition of the mRNA from the parental DUXC gene. Primates and rodents have lost the parental DUXC gene, and it is unknown whether DUXC had a similar role in driving an early pluripotent transcriptional program. Dogs and other Laurasiatherians have retained DUXC, providing an opportunity to determine the functional similarity to the retrotransposed DUX4 and Dux. Here, we identify the expression of two isoforms of DUXC mRNA in canine testis tissues: one encoding the canonical double homeodomain protein (DUXC), similar to DUX4/Dux, and a second that includes an in-frame alternative exon that disrupts the conserved amino acid sequence of the first homeodomain (DUXC-ALT). The expression of DUXC in canine cells induces a pluripotent program similar to DUX4 and Dux and induces the expression of a similar set of retrotransposons of the ERV/MaLR and LINE-1 families, as well as pericentromeric satellite repeats; whereas DUXC-ALT did not robustly activate gene expression in these assays. Important for preclinical models of FSHD, human DUX4 and canine DUXC show higher conservation of their homeodomains and corresponding binding motifs compared with the conservation between human DUX4 and mouse Dux, and human DUX4 activates a highly similar transcriptional program in canine cells. Together, these findings show that retrotransposition resulted in the loss of an alternatively spliced isoform and that DUXC containing mammals might be good candidates for certain preclinical models ofFSHD.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Amino Acid Sequence , Animals , Dogs , Homeodomain Proteins/genetics , Homeodomain Proteins/metabolism , Male , Mammals/metabolism , Mice , Muscle, Skeletal/metabolism , Muscular Dystrophy, Facioscapulohumeral/genetics , Muscular Dystrophy, Facioscapulohumeral/metabolism , RNA, Messenger/metabolism , Retroelements/genetics
17.
Sci Rep ; 11(1): 23642, 2021 12 08.
Article in English | MEDLINE | ID: mdl-34880314

ABSTRACT

Structural Maintenance of Chromosomes Hinge Domain Containing 1 (SMCHD1) is a chromatin repressor, which is mutated in > 95% of Facioscapulohumeral dystrophy (FSHD) type 2 cases. In FSHD2, SMCHD1 mutations ultimately result in the presence of the cleavage stage transcription factor DUX4 in muscle cells due to a failure in epigenetic repression of the D4Z4 macrosatellite repeat on chromosome 4q, which contains the DUX4 locus. While binding of SMCHD1 to D4Z4 and its necessity to maintain a repressive D4Z4 chromatin structure in somatic cells are well documented, it is unclear how SMCHD1 is recruited to D4Z4, and how it exerts its repressive properties on chromatin. Here, we employ a quantitative proteomics approach to identify and characterize novel SMCHD1 interacting proteins, and assess their functionality in D4Z4 repression. We identify 28 robust SMCHD1 nuclear interactors, of which 12 are present in D4Z4 chromatin of myocytes. We demonstrate that loss of one of these SMCHD1 interacting proteins, RuvB-like 1 (RUVBL1), further derepresses DUX4 in FSHD myocytes. We also confirm the interaction of SMCHD1 with EZH inhibitory protein (EZHIP), a protein which prevents global H3K27me3 deposition by the Polycomb repressive complex PRC2, providing novel insights into the potential function of SMCHD1 in the repression of DUX4 in the early stages of embryogenesis. The SMCHD1 interactome outlined herein can thus provide further direction into research on the potential function of SMCHD1 at genomic loci where SMCHD1 is known to act, such as D4Z4 repeats, the inactive X chromosome, autosomal gene clusters, imprinted loci and telomeres.


Subject(s)
ATPases Associated with Diverse Cellular Activities/genetics , Carrier Proteins/genetics , Chromosomal Proteins, Non-Histone/genetics , DNA Helicases/genetics , Homeodomain Proteins/genetics , Muscular Dystrophy, Facioscapulohumeral/genetics , Proteomics/methods , ATPases Associated with Diverse Cellular Activities/metabolism , Carrier Proteins/metabolism , Cell Line, Tumor , Chromosomal Proteins, Non-Histone/metabolism , DNA Helicases/metabolism , Gene Expression Regulation, Developmental , HEK293 Cells , Homeodomain Proteins/metabolism , Humans , Protein Binding
18.
Mol Ther Nucleic Acids ; 26: 813-827, 2021 Dec 03.
Article in English | MEDLINE | ID: mdl-34729250

ABSTRACT

Facioscapulohumeral muscular dystrophy (FSHD) is one of the most prevalent skeletal muscle dystrophies. Skeletal muscle pathology in individuals with FSHD is caused by inappropriate expression of the transcription factor DUX4, which activates different myotoxic pathways. At the moment there is no molecular therapy that can delay or prevent skeletal muscle wasting in FSHD. In this study, a systemically delivered antisense oligonucleotide (ASO) targeting the DUX4 transcript was tested in vivo in ACTA1-MCM;FLExDUX4 mice that express DUX4 in skeletal muscles. We show that the DUX4 ASO was well tolerated and repressed the DUX4 transcript, DUX4 protein, and mouse DUX4 target gene expression in skeletal muscles. In addition, the DUX4 ASO alleviated the severity of skeletal muscle pathology and partially prevented the dysregulation of inflammatory and extracellular matrix genes. DUX4 ASO-treated ACTA1-MCM;FLExDUX4 mice performed better on a treadmill; however, the hanging grid and four-limb grip strength tests were not improved compared to control ASO-treated ACTA1-MCM;FLExDUX4 mice. This study shows that systemic delivery of ASOs targeting DUX4 is a promising therapeutic strategy for FSHD and strategies that further improve the ASO efficacy in skeletal muscle are warranted.

19.
BMC Musculoskelet Disord ; 22(1): 262, 2021 Mar 10.
Article in English | MEDLINE | ID: mdl-33691664

ABSTRACT

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is a patchy and slowly progressive disease of skeletal muscle. For MRI to be a useful biomarker in an FSHD clinical trial, it should reliably detect changes over relatively short time-intervals (~ 1 year). We hypothesized that fatty change over the study course would be most likely in muscles already demonstrating disease progression, and that the degree of MRI burden would be correlated with function. METHODS: We studied 36 patients with FSHD and lower-extremity weakness at baseline. Thirty-two patients returned in our 12-month longitudinal observational study. We analyzed DIXON MRI images of 16 lower-extremity muscles in each patient and compared them to quantitative strength measurement and ambulatory functional outcome measures. RESULTS: There was a small shift to higher fat fractions in the summed muscle data for each patient, however individual muscles demonstrated much larger magnitudes of change. The greatest increase in fat fraction was observed in muscles having an intermediate fat replacement at baseline, with minimally (baseline fat fraction < 0.10) or severely (> 0.70) affected muscles less likely to progress. Functional outcome measures did not demonstrate marked change over the interval; however, overall MRI disease burden was correlated with functional outcome measures. Direct comparison of the tibialis anterior (TA) fat fraction and quantitative strength measurement showed a sigmoidal relationship, with steepest drop being when the muscle gets more than ~ 20% fatty replaced. CONCLUSIONS: Assessing MRI changes in 16 lower-extremity muscles across 1 year demonstrated that those muscles having an intermediate baseline fat fraction were more likely to progress. Ambulatory functional outcome measures are generally related to overall muscle MRI burden but remain unchanged in the short term. Quantitative strength measurement of the TA showed a steep loss of strength when more fatty infiltration is present suggesting that MRI may be preferable for following incremental change or modulation with drug therapy.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Muscle, Skeletal/diagnostic imaging , Muscular Dystrophy, Facioscapulohumeral/diagnostic imaging , Outcome Assessment, Health Care
20.
BMC Musculoskelet Disord ; 22(1): 56, 2021 Jan 09.
Article in English | MEDLINE | ID: mdl-33422031

ABSTRACT

BACKGROUND: Facioscapulohumeral muscular dystrophy (FSHD) is a patchy and slowly progressive disease of skeletal muscle. MRI short tau inversion recovery (STIR) sequences of patient muscles often show increased hyperintensity that is hypothesized to be associated with inflammation. This is supported by the presence of inflammatory changes on biopsies of STIR-positive muscles. We hypothesized that the STIR positivity would normalize with targeted immunosuppressive therapy. CASE PRESENTATION: 45-year-old male with FSHD type 1 was treated with 12 weeks of immunosuppressive therapy, tacrolimus and prednisone. Tacrolimus was treated to a goal serum trough of > 5 ng/mL and prednisone was tapered every month. Quantitative strength exam, functional outcome measures, and muscle MRI were performed at baseline, week 6, and week 12. The patient reported subjective worsening as reflected in quantitative strength exam. The MRI STIR signal was slightly increased from 0.02 to 0.03 of total muscle; while the T1 fat fraction was stable. Functional outcome measures also were stable. CONCLUSIONS: Immunosuppressive therapy in refractive autoimmune myopathy in other contexts has been shown to reverse STIR signal hyperintensity, however this treatment did not reverse STIR signal in this patient with FSHD. In fact, STIR signal slightly increased throughout the treatment period. This is the first study of using MRI STIR and T1 fat fraction to follow treatment effect in FSHD. We find that STIR might not be a dynamic marker for suppressing inflammation in FSHD.


Subject(s)
Muscular Dystrophy, Facioscapulohumeral , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Muscle, Skeletal/diagnostic imaging , Muscular Dystrophy, Facioscapulohumeral/diagnostic imaging , Muscular Dystrophy, Facioscapulohumeral/drug therapy , Outcome Assessment, Health Care , Prednisone/therapeutic use , Tacrolimus/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...