Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
ACS Med Chem Lett ; 10(11): 1561-1567, 2019 Nov 14.
Article in English | MEDLINE | ID: mdl-31749911

ABSTRACT

Minor structural modifications-sometimes single atom changes-can have a dramatic impact on the properties of compounds. This is illustrated here on structures related to known mTOR inhibitor Sapanisertib. Subtle changes in the hinge binder lead to strikingly different overall profiles with changes in physical properties, metabolism, and kinase selectivity.

2.
Bioorg Med Chem Lett ; 28(8): 1269-1273, 2018 05 01.
Article in English | MEDLINE | ID: mdl-29571573

ABSTRACT

Progress in the identification of suitable RORγ inverse agonists as clinical candidates has been hampered by the high lipophilicity that seems required for high potency on this nuclear receptor. In this context, we decided to focus on the replacement of the hydroxymethyl group found on known modulators to determine if more polarity could be tolerated in this position. SAR of the replacement of this moiety is presented in this article leading to the identification of sulfoximine derivatives as potent modulators with pharmacological activity in the in vivo mouse Imiquimod psoriasis model.


Subject(s)
Imines/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 3/antagonists & inhibitors , Sulfonamides/pharmacology , Sulfoxides/pharmacology , Animals , Drug Inverse Agonism , Female , Humans , Imines/chemical synthesis , Imines/chemistry , Ligands , Mice, Inbred BALB C , Molecular Structure , Stereoisomerism , Structure-Activity Relationship , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfoxides/chemical synthesis , Sulfoxides/chemistry
3.
ChemMedChem ; 13(4): 321-337, 2018 02 20.
Article in English | MEDLINE | ID: mdl-29327456

ABSTRACT

With possible implications in multiple autoimmune diseases, the retinoic acid receptor-related orphan receptor RORγ has become a sought-after target in the pharmaceutical industry. Herein are described the efforts to identify a potent RORγ inverse agonist compatible with topical application for the treatment of skin diseases. These efforts culminated in the discovery of N-(2,4-dimethylphenyl)-N-isobutyl-2-oxo-1-[(tetrahydro-2H-pyran-4-yl)methyl]-2,3-dihydro-1H-benzo[d]imidazole-5-sulfonamide (CD12681), a potent inverse agonist with in vivo activity in an IL-23-induced mouse skin inflammation model.


Subject(s)
Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Psoriasis/drug therapy , Sulfonamides/chemistry , Administration, Topical , Animals , Disease Models, Animal , Drug Evaluation, Preclinical , Drug Inverse Agonism , Humans , Inhibitory Concentration 50 , Interleukin-17/metabolism , Interleukin-23/pharmacology , Keratinocytes/cytology , Keratinocytes/drug effects , Keratinocytes/metabolism , Mice , Mice, Inbred BALB C , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Psoriasis/pathology , Skin Diseases/chemically induced , Skin Diseases/drug therapy , Skin Diseases/pathology , Structure-Activity Relationship , Sulfonamides/metabolism , Sulfonamides/therapeutic use , Th17 Cells/cytology , Th17 Cells/drug effects , Th17 Cells/metabolism
4.
Bioorg Med Chem ; 26(4): 945-956, 2018 02 15.
Article in English | MEDLINE | ID: mdl-28818461

ABSTRACT

Targeting the TNFα pathway is a validated approach to the treatment of psoriasis. In this pathway, TACE stands out as a druggable target and has been the focus of in-house research programs. In this article, we present the discovery of clinical candidate 26a. Starting from hits plagued with poor solubility or genotoxicity, 26a was identified through thorough multiparameter optimisation. Showing robust in vivo activity in an oxazolone-mediated inflammation model, the compound was selected for development. Following a polymorph screen, the hydrochloride salt was selected and the synthesis was efficiently developed to yield the API in 47% overall yield.


Subject(s)
ADAM17 Protein/antagonists & inhibitors , Enzyme Inhibitors/chemistry , ADAM17 Protein/metabolism , Administration, Topical , Animals , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/therapeutic use , Female , Humans , Hydroxamic Acids/chemistry , Mice , Mice, Hairless , Microsomes, Liver/metabolism , Oxazolone/toxicity , Psoriasis/drug therapy , Psoriasis/pathology , Skin Diseases/chemically induced , Skin Diseases/prevention & control , Skin Diseases/veterinary , Solubility , Sulfonamides/chemical synthesis , Sulfonamides/chemistry , Sulfonamides/therapeutic use , Tumor Necrosis Factor-alpha/antagonists & inhibitors , Tumor Necrosis Factor-alpha/metabolism
5.
Bioorg Med Chem Lett ; 27(8): 1848-1853, 2017 04 15.
Article in English | MEDLINE | ID: mdl-28274635

ABSTRACT

Targeting the Tumor Necrosis Factor α signalling with antibodies has led to a revolution in the treatment of psoriasis. Locally inhibiting Tumor Necrosis Factor α Converting Enzyme (TACE or ADAM17) could potentially mimic those effects and help treat mild to moderate psoriasis, without the reported side effect of systemic TACE inhibitors. Efforts to identify new TACE inhibitors are presented here. Enzymatic SAR as well as ADME and physico-chemistry data are presented. This study culminated in the identification of potent enzymatic inhibitors. Suboptimal cellular activity of this series is discussed in the context of previously published results.


Subject(s)
ADAM17 Protein/antagonists & inhibitors , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Hydroxamic Acids/administration & dosage , Hydroxamic Acids/chemistry , ADAM17 Protein/metabolism , Administration, Topical , Humans , Psoriasis/drug therapy , Psoriasis/enzymology
6.
Bioorg Med Chem Lett ; 26(23): 5802-5808, 2016 12 01.
Article in English | MEDLINE | ID: mdl-27815118

ABSTRACT

Targeting the IL17 pathway and more specifically the nuclear receptor RORγ is thought to be beneficial in multiple skin disorders. The Letter describes the discovery of phenoxyindazoles and thiophenoxy indazoles as potent RORγ inverse agonists. Optimization of the potency and efforts to mitigate the phototoxic liability of the series are presented. Finally, crystallization of the lead compound revealed that the series bound to an allosteric site of the nuclear receptor. Such compounds could be useful as tool compounds for understanding the impact of topical treatment on skin disease models.


Subject(s)
Indazoles/chemistry , Indazoles/pharmacology , Nuclear Receptor Subfamily 1, Group F, Member 3/agonists , Drug Inverse Agonism , Humans , Molecular Docking Simulation , Nuclear Receptor Subfamily 1, Group F, Member 3/metabolism , Structure-Activity Relationship
7.
Proc Natl Acad Sci U S A ; 109(37): 14858-63, 2012 Sep 11.
Article in English | MEDLINE | ID: mdl-22927409

ABSTRACT

Insects use hydrocarbons as cuticular waterproofing agents and as contact pheromones. Although their biosynthesis from fatty acyl precursors is well established, the last step of hydrocarbon biosynthesis from long-chain fatty aldehydes has remained mysterious. We show here that insects use a P450 enzyme of the CYP4G family to oxidatively produce hydrocarbons from aldehydes. Oenocyte-directed RNAi knock-down of Drosophila CYP4G1 or NADPH-cytochrome P450 reductase results in flies deficient in cuticular hydrocarbons, highly susceptible to desiccation, and with reduced viability upon adult emergence. The heterologously expressed enzyme converts C(18)-trideuterated octadecanal to C(17)-trideuterated heptadecane, showing that the insect enzyme is an oxidative decarbonylase that catalyzes the cleavage of long-chain aldehydes to hydrocarbons with the release of carbon dioxide. This process is unlike cyanobacteria that use a nonheme diiron decarbonylase to make alkanes from aldehydes with the release of formate. The unique and highly conserved insect CYP4G enzymes are a key evolutionary innovation that allowed their colonization of land.


Subject(s)
Animal Shells/chemistry , Biosynthetic Pathways/physiology , Cytochrome P-450 Enzyme System/metabolism , Drosophila/enzymology , Hydrocarbons/metabolism , NADPH-Ferrihemoprotein Reductase/metabolism , Aldehydes/metabolism , Animals , Biosynthetic Pathways/genetics , Drosophila/chemistry , Immunohistochemistry , Microscopy, Confocal , Microsomes/metabolism , Molecular Structure , RNA Interference
8.
PLoS One ; 6(10): e25708, 2011.
Article in English | MEDLINE | ID: mdl-21991338

ABSTRACT

Methoxyfenozide and methoprene are two insecticides that mimic the action of the main hormones involved in the control of insect growth and development, 20-hydroxyecdysone and juvenile hormone. We investigated their effect on the Spodoptera frugiperda Sf9 cell line. Methoxyfenozide was more toxic than methoprene in cell viability tests and more potent in the inhibition of cellular proliferation. Cell growth arrest occurred in the G2/M phase after a methoprene treatment and more modestly in G1 after methoxyfenozide treatment. Microarray experiments and real-time quantitative PCR to follow the expression of nuclear receptors ultraspiracle and ecdysone receptor were performed to understand the molecular action of these hormone agonists. Twenty-six genes were differentially expressed after methoxyfenozide treatment and 55 genes after methoprene treatment with no gene in common between the two treatments. Our results suggest two different signalling pathways in Sf9 cells.


Subject(s)
Cell Cycle/drug effects , Juvenile Hormones/agonists , Spodoptera/cytology , Spodoptera/drug effects , Animals , Cell Cycle/genetics , Cell Cycle Checkpoints/drug effects , Cell Line , Cell Proliferation/drug effects , Flow Cytometry , Gene Expression Regulation/drug effects , Genes, Insect/genetics , Hydrazines/toxicity , Insecticides/toxicity , Juvenile Hormones/toxicity , Methoprene/toxicity , Oligonucleotide Array Sequence Analysis , RNA, Messenger/genetics , RNA, Messenger/metabolism , Receptors, Cytoplasmic and Nuclear/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Signal Transduction/drug effects , Signal Transduction/genetics , Spodoptera/genetics
9.
Mech Dev ; 127(9-12): 442-57, 2010.
Article in English | MEDLINE | ID: mdl-20709169

ABSTRACT

The pannier (pnr) gene of Drosophila melanogaster encodes two isoforms that belong to the family of GATA transcription factors. The isoforms share an expression domain in the wing discs where they exhibit distinct functions during regulation of the proneural achaete/scute (ac/sc) genes. We previously identified two regions in the pnr locus that drive reporter expression in transgenic lines in patterns that recapitulate the essential features of expression of the two isoforms. Here, we identify promoter regions driving isoform expression, showing that pnr-α regulatory sequences are close to the transcription start site while pnr-ß expression requires functional interactions between proximal and distal regulatory elements. We find that the promoter domains necessary for reporter expression also mediate autoregulation of Pnr-ß and repression of pnr-α by Pnr-ß. The cofactor U-shaped (Ush), which is known to down-regulate the function of Pnr during thorax patterning postranscriptionally, in addition represses pnr-ß required for ac/sc activation. Moreover, Ush negatively regulates its own expression, while the pnr isoforms positively regulate ush. Our study uncovers complex transcriptional interactions between the pnr isoforms and the cofactor Ush that may be important for regulation of proneural expression and thorax patterning.


Subject(s)
Drosophila Proteins/genetics , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Nervous System/embryology , Nervous System/metabolism , Transcription Factors/genetics , Transcription, Genetic , Animal Structures/embryology , Animal Structures/metabolism , Animals , Body Patterning/genetics , Drosophila Proteins/metabolism , Gene Expression Regulation, Developmental , Homeostasis/genetics , Models, Genetic , Promoter Regions, Genetic/genetics , Protein Isoforms/genetics , Protein Isoforms/metabolism , Transcription Factors/metabolism
10.
Mediators Inflamm ; 2009: 285812, 2009.
Article in English | MEDLINE | ID: mdl-20150960

ABSTRACT

Crohn's disease (CD) is a multifactorial chronic inflammatory bowel disease of unknown cause. The aim of the present study was to explore if mRNA over-expression of SSTR5 and CCR7 found in CD patients could be correlated to respective protein expression. When compared to healthy donors, SSTR5 was over-expressed 417 +/- 71 times in CD peripheral blood mononuclear cells (PBMCs). Flow cytometry experiments showed no correlation between mRNA and protein expression for SSTR5 in PBMCs. In an attempt to find a reason of such a high mRNA expression, SSTR5 present on CD PBMCs were tested and found as biologically active as on healthy cells. In biopsies of CD intestinal tissue, SSTR5 was not over-expressed but CCR7, unchanged in PBMCs, was over-expressed by 10 +/- 3 times in the lamina propria. Confocal microscopy showed a good correlation of CCR7 mRNA and protein expression in CD intestinal biopsies. Our data emphasize flow and image cytometry as impossible to circumvent in complement to molecular biology so to avoid false interpretation on receptor expressions. Once confirmed by further large-scale studies, our preliminary results suggest a role for SSTR5 and CCR7 in CD pathogenesis.


Subject(s)
Crohn Disease/metabolism , Gene Expression Regulation , RNA, Messenger/metabolism , Receptors, CCR7/metabolism , Receptors, Somatostatin/metabolism , Adult , Female , Flow Cytometry , Humans , Leukocytes, Mononuclear/metabolism , Male , Microscopy, Confocal/methods , Models, Biological , Mucous Membrane/metabolism , Tumor Necrosis Factor-alpha/metabolism
12.
Biochem Biophys Res Commun ; 322(3): 778-86, 2004 Sep 24.
Article in English | MEDLINE | ID: mdl-15336532

ABSTRACT

Crohn's disease is a chronic intestinal inflammatory process. In modern therapy, TNF-alpha inhibition is the main goal. The aim here is to characterize the effects of Celastrol, a pentacyclic-triterpene, on the secretion of inflammatory cytokines by LPS-activated human cells. Celastrol dose-dependently inhibited the secretion of all tested pro-inflammatory cytokines with IC(50) in the nanomolar range. Effect not related to glucocorticoid receptor activity is shown by competition experiments with the steroid antagonist RU486. Celastrol inhibited the pro-inflammatory cytokine secretion from mucosal inflammatory biopsies from Crohn's disease patients. Cytometry emphasized that for all tested pro-inflammatory cytokines, CD33(+) cells are the most sensitive. Quantitative-PCR and confocal analysis on a human monocytic cell line indicated that Celastrol acts at the transcriptional level by inhibiting LPS-induced NF-kappaB translocation. Celastrol might be a putative anti-inflammatory drug in the treatment of inflammatory diseases, given its inhibition of cytokine production by intestinal biopsies from Crohn's disease patients.


Subject(s)
Colon/pathology , Crohn Disease/pathology , Cytokines/biosynthesis , Inflammation/physiopathology , Triterpenes/pharmacology , Cell Line , Cell Survival/drug effects , Cells, Cultured , Colon/drug effects , Cytokines/antagonists & inhibitors , Humans , Lipopolysaccharides/toxicity , Monocytes , Pentacyclic Triterpenes , Receptors, Glucocorticoid/drug effects , Receptors, Glucocorticoid/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...