Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 32(12): 20459-20470, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38859427

ABSTRACT

When a hollow core fiber is drawn, the core and cladding holes within the internal cane geometry are pressurized with an inert gas to enable precise control over the internal microstructure of the fiber and counteract surface tension forces. Primarily by considering the temperature drop as the fiber passes through the furnace and the geometrical transformation of the internal microstructure from preform-to-fiber, we recently established that the gas pressure within the final 'as-drawn' fiber is substantially below atmospheric pressure. We have also established that slight changes in the gas refractive index within the core and surrounding cladding holes induced by changes in gas pressure are sufficient to significantly affect both the modality and loss of the fiber. Here we demonstrate, through both simulations and experimental measurements, that the combination of these effects leads to transient changes in the fiber's attenuation when the fibers are opened to atmosphere post-fabrication. It is important to account for this phenomenon for accurate fiber characterization, particularly when long lengths of fiber are drawn where it could take many weeks for every part of the internal microstructure to reach atmospheric pressure.

2.
Opt Express ; 30(17): 31310-31321, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-36242216

ABSTRACT

Today's lowest-loss hollow core fibers are based on antiresonance guidance. They have been shown both theoretically and experimentally to have very low levels of backscattering arising from the fiber structure - 45 dB below that of traditional optical fibers with a solid silica glass core. This makes their longitudinal characterization using conventional reflectometric techniques very challenging. However, it was recently estimated that when filled with air, their backscattering coefficient increases to about 30 dB below that of standard solid core fibers. This level should be measurable with commercially available high performance optical time domain reflectometers (OTDR). Here we demonstrate - for the first time to the best of our knowledge - the measurement of backscattering from the air inside a hollow core fiber. We show that the characterization of multi-km long hollow core fibers with 15 m spatial resolution is possible using a commercial OTDR instrument. To benefit from its full dynamic range, we strongly suppress the 4% back-reflections that ordinarily occur at the OTDR's standard fiber output when directly-connected to a hollow core fiber. Furthermore, low coupling loss into the hollow core fiber (0.3 dB in our experiment) also helps to maximize the achievable OTDR signal-to-noise ratio. This approach enables distributed characterization and fault-finding in low-loss hollow core fibers, a topic of increasing importance as these fibers are now starting to be installed in commercial optical communication networks.

3.
Opt Lett ; 46(1): 46-49, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33362012

ABSTRACT

Resonator fiber optic gyroscope (RFOG) performance has hitherto been limited by nonlinearity, modal impurity, and backscattering in the sensing fibers. The use of hollow-core fiber (HCF) effectively reduces nonlinearity, but the complex interplay among glass and air-guided modes in conventional HCF technologies can severely exacerbate RFOG instability. By employing high-performance nested anti-resonant nodeless fiber, we demonstrate long-term stability in a hollow-fiber RFOG of 0.05 deg/h, nearing the levels required for civil aircraft navigation. This represents a ${{3}} \times$ improvement over any prior hollow-core RFOG and a factor of ${{500}} \times$ over any prior result at integration times longer than 1 h.

SELECTION OF CITATIONS
SEARCH DETAIL
...