Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Rev Sci Instrum ; 95(1)2024 Jan 01.
Article in English | MEDLINE | ID: mdl-38190494

ABSTRACT

We present a table-top setup for femtosecond time-resolved x-ray diffraction based on a Cu Kα (8.05 keV) laser driven plasma x-ray source. Due to its modular design, it provides high accessibility to its individual components (e.g., x-ray optics and sample environment). The Kα-yield of the source is optimized using a pre-pulse scheme. A magnifying multilayer x-ray mirror with Montel-Helios geometry is used to collect the emitted radiation, resulting in a quasi-collimated flux of more than 105 Cu Kα photons/pulse impinging on the sample under investigation at a repetition rate of 10 Hz. A gas ionization chamber detector is placed right after the x-ray mirror and used for the normalization of the diffraction signals, enabling the measurement of relative signal changes of less than 1% even at the given low repetition rate. Time-resolved diffraction experiments on laser-excited epitaxial Bi films serve as an example to demonstrate the capabilities of the setup. The setup can also be used for Debye-Scherrer type measurements on poly-crystalline samples.

2.
Struct Dyn ; 7(1): 014301, 2020 Jan.
Article in English | MEDLINE | ID: mdl-31934600

ABSTRACT

We present a setup for time-resolved X-ray diffraction based on a short pulse, laser-driven plasma X-ray source. The employed modular design provides high flexibility to adapt the setup to the specific requirements (e.g., X-ray optics and sample environment) of particular applications. The configuration discussed here has been optimized toward high angular/momentum resolution and uses K α -radiation (4.51 keV) from a Ti wire-target in combination with a toroidally bent crystal for collection, monochromatization, and focusing of the emitted radiation. 2 × 10 5 Ti-K α1 photons per pulse with 10 - 4 relative bandwidth are delivered to the sample at a repetition rate of 10 Hz. This allows for the high dynamic range (104) measurements of transient changes in the rocking curves of materials as for example induced by laser-triggered strain waves.

3.
Opt Express ; 27(22): 31330-31337, 2019 Oct 28.
Article in English | MEDLINE | ID: mdl-31684367

ABSTRACT

High-energy femtosecond laser pulses in the mid-infrared (MIR) wavelength range are essential for a wide range of applications from strong-field physics to selectively pump and probe low energy excitations in condensed matter and molecular vibrations. Here we report a four stage optical parametric chirped pulse amplifier (OPCPA) which generates ultrashort pulses at a central wavelength of 3000 nm with 430 µJ energy per pulse at a bandwidth of 490 nm. Broadband emission of a Ti:sapphire oscillator seeds both the four stage OPCPA 800 nm and the pump line at 1030 nm. The first stage amplifies the 800 nm pulses in BBO using a non-collinear configuration. The second stage converts the wavelength to 1560 nm using difference frequency generation in BBO in a collinear geometry. The third stage amplifies this frequency non-collinearly in KTA. Finally, the fourth stage generates the 3000 nm radiation in a collinear configuration in LiIO 3 due to the broad amplification bandwidth this crystal provides. We compress these pulses to 65 fs by transmission through sapphire. Quantitative calculations of the individual non-linear processes in all stages verify that our OPCPA architecture operates close to optimum efficiency. Low absorption losses suggest that this particular design is very suitable for operation at high average power and multi kHz repetition rates.

4.
Phys Rev E Stat Nonlin Soft Matter Phys ; 82(5 Pt 2): 056410, 2010 Nov.
Article in English | MEDLINE | ID: mdl-21230605

ABSTRACT

The polarization of the two beam (driver-probe) high-order harmonic generation from solids is measured. The experiments, together with computer simulations, allow us to distinguish two different coupling mechanisms of the driver and the probe, resulting in different harmonic efficiencies and spectral slopes. We find that in the nonrelativistic regime the coupling is mostly due to the nonlinear plasma density modulation.

5.
Phys Rev E Stat Nonlin Soft Matter Phys ; 80(2 Pt 2): 026404, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19792265

ABSTRACT

We investigate the generation of ultrashort Kalpha pulses from plasmas produced by intense femtosecond p-polarized laser pulses on Copper and Titanium targets. Particular attention is given to the interplay between the angle of incidence of the laser beam on the target and a controlled prepulse. It is observed experimentally that the Kalpha yield can be optimized for correspondingly different prepulse and plasma scale-length conditions. For steep electron-density gradients, maximum yields can be achieved at larger angles. For somewhat expanded plasmas expected in the case of laser pulses with a relatively poor contrast, the Kalpha yield can be enhanced by using a near-normal-incidence geometry. For a certain scale-length range (between 0.1 and 1 times a laser wavelength) the optimized yield is scale-length independent. Physically this situation arises because of the strong dependence of collisionless absorption mechanisms-in particular resonance absorption-on the angle of incidence and the plasma scale length, giving scope to optimize absorption and hence the Kalpha yield. This qualitative description is supported by calculations based on the classical resonance absorption mechanism and by particle-in-cell simulations. Finally, the latter simulations also show that even for initially steep gradients, a rapid profile expansion occurs at oblique angles in which ions are pulled back toward the laser by hot electrons circulating at the front of the target. The corresponding enhancement in Kalpha yield under these conditions seen in the present experiment represents strong evidence for this suprathermal shelf formation effect.

6.
Rev Sci Instrum ; 80(8): 083102, 2009 Aug.
Article in English | MEDLINE | ID: mdl-19725641

ABSTRACT

An elliptical glass capillary has been used to focus ultrashort Cu K alpha x-ray pulses emitted from a femtosecond laser-produced plasma. Due to its high magnification (7x), the optic transforms the divergent x-ray emission of the plasma into a quasicollimated x-ray beam with a divergence of only 0.18 degrees. As an application we demonstrate the possibility to perform Debye-Scherrer diffraction experiments with the simultaneous detection of several diffraction orders. This will allow one to extend time-resolved x-ray diffraction with femtosecond laser-plasma x-ray sources to a much wider range of materials, which are not easily available as single crystals.

7.
Opt Lett ; 29(13): 1521-3, 2004 Jul 01.
Article in English | MEDLINE | ID: mdl-15259733

ABSTRACT

Femtosecond laser pulses with powers below the blowup threshold for self-focused beams are shown to experience spatial self-action in hollow-core photonic crystal fibers filled with argon, nitrogen, and atmospheric air. Regardless of the transverse field distribution at the input of the fiber, the output beam pattern in this regime tends to a circularly symmetric profile, corresponding to a ground-state waveguide induced by laser pulses inside a hollow fiber.

8.
Opt Lett ; 29(13): 1545-7, 2004 Jul 01.
Article in English | MEDLINE | ID: mdl-15259741

ABSTRACT

Phase-matched parametric four-wave mixing in higher-order guided modes of a photonic crystal fiber is shown to result in an efficient decay of 40-fs 800-nm Ti:sapphire laser pump pulses into an anti-Stokes signal with a central wavelength around 590-600 nm and a Stokes signal centered at 1.25 microm. The photonic crystal fiber is designed in such a way as to minimize the group-velocity dispersion at the pump wavelength, phase match the parametric four-wave-mixing process, and reduce the group delay between the pump and the anti-Stokes pulses. The duration of the anti-Stokes pulse under these conditions, as shown by cross-correlation frequency-resolved optical gating measurements, is less than 200 fs.

9.
Phys Rev E Stat Nonlin Soft Matter Phys ; 68(2 Pt 2): 026410, 2003 Aug.
Article in English | MEDLINE | ID: mdl-14525123

ABSTRACT

The onset of an electron parametric instability and 3/2 harmonic generation in variable-scale-length plasmas on solid surfaces using femtosecond pulses is observed. With the intensity approaching 10(18) W/cm(2), the instability threshold is already reached at plasma scale lengths of the order of the laser wavelength. A well-collimated harmonic emission with unusually broad spectrum is obtained.

10.
Phys Rev Lett ; 87(22): 225701, 2001 Nov 26.
Article in English | MEDLINE | ID: mdl-11736408

ABSTRACT

Time-resolved x-ray diffraction with ultrashort ( approximately 300 fs), multi-keV x-ray pulses has been used to study the femtosecond laser-induced solid-to-liquid phase transition in a thin crystalline layer of germanium. Nonthermal melting is observed to take place within 300-500 fs. Following ultrafast melting we observe strong acoustic perturbations evolving on a picosecond time scale.

SELECTION OF CITATIONS
SEARCH DETAIL