Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Pak J Biol Sci ; 27(3): 113-118, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38686732

ABSTRACT

<b>Background and Objective:</b> Malnutrition and stunting are major unresolved problems in Indonesia. Protein deficiency can cause stunted growth, as well as make physical and cognitive abilities cannot reach their maximum potential. During childhood the need for protein must be fulfilled so that the peak of bone formation during adolescence can be perfect. In malnourished children, a low protein diet will lead to thinning of the bone cortex. Due to the high rate of stunting and malnutrition in children due to protein deficiency, a study was conducted on the effects of feeding low protein diet on rat bones. <b>Materials and Methods:</b> Male Wistar rats (n = 10) at 6-8 weeks old (body weight around 250 g), control groups were fed a normal chow diet and low protein diet groups were given low protein chow diet (protein 5%) for 18 weeks, then the rats were sacrificed and the femoral bones were isolated. Body weight, femur weight, femur length were checked and bone density was examined using X-ray. <b>Results:</b> The body proportions of the low protein group rats were smaller and thinner than those of the control group. This difference is supported by the significant weight loss starting from the sixth week after low protein feeding. There are significant differences in body weight and femur weight between the control and low protein diet groups. Bone density decreases significantly in low protein diet group. Macroscopically, the femur length of the low protein group was shorter than the control group, however the femur length did not show significant differences statistically between the two groups. <b>Conclusion:</b> A low protein diet decreased the body weight of the rats, also causing impaired bone growth characterized by decreasing femur weight. The low protein diet also caused osteoporosis in the bones.


Subject(s)
Bone Density , Diet, Protein-Restricted , Femur , Rats, Wistar , Animals , Male , Femur/metabolism , Rats , Body Weight , Bone Development , Bone and Bones/metabolism , Dietary Proteins/administration & dosage , Dietary Proteins/metabolism
2.
Physiol Rep ; 11(17): e15803, 2023 09.
Article in English | MEDLINE | ID: mdl-37667409

ABSTRACT

Specific exercise intensities could improve lung vascular function by increasing nitric oxide (NO). The ACE2/MasR/eNOS axis is one of the pathways facilitating NO synthesis. This study examines the effect of different intensities of aerobic training on the ACE2/MasR/eNOS axis and histology of lung muscular arteries. Male Wistar rats were used in this study and randomized into control and exercise groups receiving low-, moderate-, and high-intensity training. The training was conducted for 30 min daily, five times a week, for 8 weeks. We observed that different exercise intensities affect the ACE2/MasR/eNOS pathway differently. Compared to control, high-intensity aerobic exercise significantly increased ACE2, Mas receptor (MasR), and eNOS mRNA expressions (p < 0.01). Moderate-intensity exercise significantly increased MasR and eNOS mRNA expressions compared to the control (p < 0.05), and this intensity also increased ACE2 mRNA but not significantly. Low-intensity exercise increased ACE2, MasR, and eNOS mRNA expressions but not significantly. Low-, moderate-, or high-intensity exercises reduced the medial wall thickness of the lung muscular arteries but not significantly. In conclusion, high-intensity exercise may induce NO synthesis in the lung by increasing mRNA expression of ACE2, MasR, and eNOS without decreasing the medial wall thickness of the muscular artery. Thus, high-intensity exercise may be the optimal intensity to improve NO synthesis and vascular function in the lung.


Subject(s)
Angiotensin-Converting Enzyme 2 , Lung , Nitric Oxide Synthase Type III , Physical Conditioning, Animal , Proto-Oncogene Mas , Animals , Male , Rats , Arteries , Rats, Wistar , RNA, Messenger/genetics
3.
J Blood Med ; 14: 477-485, 2023.
Article in English | MEDLINE | ID: mdl-37641693

ABSTRACT

Background: Indonesia is a country with high biodiversity of more than 20,000 plant species, and 35% of them are identified as having health benefits. Moringa oleifera is one plant that almost all of its parts have been used as nutritional supplements and traditional medicines. Moringa leaves contain nutrients, antioxidants, and bioactive substances that have anti-inflammatory, wound healing, and anti-anemia properties. Purpose: This study aimed to investigate the hematological effect of Moringa leaf powder in male Wistar rats under normal conditions. Methods: Twenty-four male Wistar rats strain (Rattus norvegicus) 9-10 weeks old and 250-275 grams were divided into four groups (n=6), normal as a control group and three other groups were given Moringa leaf powder at doses 200, 400, and 800 mg/kgBW during 12 weeks. Blood samples at week 12 were administered to determine blood count. Results: The results of this study showed differences between the various doses of Moringa leaf powder for each hematological profile. These differences were more significant for MCH parameters that indicated a decrease in the D800 group compared with the control group. Conclusion: In conclusion, this study revealed that the consumption of Moringa leaf powder for 12 weeks did not have a significant change in the hematological profile, except for the MCH value that revealed a modification.

4.
Nutrients ; 14(21)2022 Oct 29.
Article in English | MEDLINE | ID: mdl-36364820

ABSTRACT

The non-classical role of vitamin D has been investigated in recent decades. One of which is related to its role in skeletal muscle. Satellite cells are skeletal muscle stem cells that play a pivotal role in skeletal muscle growth and regeneration. This systematic review aims to investigate the effect of vitamin D on satellite cells. A systematic search was performed in Scopus, MEDLINE, and Google Scholar. In vivo studies assessing the effect of vitamin D on satellite cells, published in English in the last ten years were included. Thirteen in vivo studies were analyzed in this review. Vitamin D increases the proliferation of satellite cells in the early life period. In acute muscle injury, vitamin D deficiency reduces satellite cells differentiation. However, administering high doses of vitamin D impairs skeletal muscle regeneration. Vitamin D may maintain satellite cell quiescence and prevent spontaneous differentiation in aging. Supplementation of vitamin D ameliorates decreased satellite cells' function in chronic disease. Overall, evidence suggests that vitamin D affects satellite cells' function in maintaining skeletal muscle homeostasis. Further research is needed to determine the most appropriate dose of vitamin D supplementation in a specific condition for the optimum satellite cells' function.


Subject(s)
Satellite Cells, Skeletal Muscle , Vitamin D/pharmacology , Regeneration , Muscle Development , Muscle Fibers, Skeletal/physiology , Cell Differentiation/physiology , Muscle, Skeletal , Vitamins/pharmacology
5.
Heliyon ; 6(5): e03874, 2020 May.
Article in English | MEDLINE | ID: mdl-32395654

ABSTRACT

INTRODUCTION: Aerobic training has a beneficial effect on enhancing liver functions. Autophagy might potentially play a role in preventing excessive lipid accumulation, regulating oxidative stress, and inflammation in the liver. OBJECTIVE: To investigate the potential linking role of autophagy-related gene expressions and protein levels with histopathology changes in Wistar rat livers after treadmill training under different intensities. METHODS: 20 rats were divided into 4 groups (control, low intensity, moderate intensity, and high intensity). 8 weeks of treadmill training was conducted with a frequency of 5 days per week, for a duration of 30 min per day. Liver histopathology was studied using hematoxylin-eosin, and oil red O staining. RNA and protein from the liver tissues were extracted to examine the autophagy-related gene (LC3, p62) and protein levels (Beclin, ATG5, LC3, p62). The gene expressions of CPT1a, CD36, FATP 2,3,5, GLUT2, and FGF21 were also studied. RESULTS: Different intensities of training might potentially modulate autophagy-related gene expressions in rat livers. LC3 and p62 mRNA expressions in moderate and high intensities decreased compared to control. Beclin, ATG5, and LC3 protein level increased compared to control, while p62 protein level decreased compared to control. Whereas for the other genes, we found an increase in CPT1a, but we did not observed any changes in the expression of the other genes. Interestingly, autophagy-related gene expressions might be correlated with the changes of sinusoidal dilatation, cloudy swelling, inflammation, and lipid droplets of the liver tissues. CONCLUSION: Moderate and high intensities of training induce autophagy activity, combined with a shift in metabolic zonation in liver that might be potentially correlated with lipophagy. Our results showed the potential interplay role between autophagy and liver histopathology appearances as a part of the adaptation process to training.

6.
J Anim Physiol Anim Nutr (Berl) ; 104(6): 1938-1947, 2020 Nov.
Article in English | MEDLINE | ID: mdl-31733001

ABSTRACT

Information about the role of moderate acute treadmill training in modulating autophagy and mitochondrial markers that might be correlated with alteration of muscle fibre gene expression in rat cardiac muscles is very limited. In this present study, the researchers divided twenty male Wistar rats into four groups: sedentary control, 3, 6 and 15 days and subjected them to treadmill training with moderate intensity (20 m/min), 30 min each day. RNA was extracted from cardiac muscles and stored in temperature of -80°C. Specific primers were utilized for semi-quantitative PCR. Treadmill training decreased autophagy-related gene expression (LC3, p62) and upper stream signalling of autophagy (PIK3CA, Akt and mTOR) in 3 and 6 d, but stimulated gene expression of mitochondrial markers (PGC1α, Cox1, Cox2 and Cox4) in 15 days. αMHC gene expression increased while ßMHC gene expression decreased in 15 days. In line with this, autophagy-related genes increased in 3 and 6 days and returned to baseline in 15 days. The increment in mitochondrial gene expression might be correlated with shifting gene expression of αMHC and ßMHC in 15 days. Taken together, acute adaptation in cardiac muscles is stimulated by genetic modulation of autophagy, mitochondrial marker and muscle fibre that may explain physiological cardiac adaptation after training. This study can be used as a reference for optimizing performance in period of cardiac muscle adaptation stimulated by treadmill training.


Subject(s)
Physical Conditioning, Animal , Animals , Autophagy , Male , Muscle Fibers, Skeletal , Muscle, Skeletal , Myocardium , Rats , Rats, Wistar
7.
Article in English | MEDLINE | ID: mdl-31198561

ABSTRACT

BACKGROUND: The mechanism for cardiac hypertrophy process that would be a benefit for improvement of cardiovascular endurance needed to be investigated throughly. Specific intensity of training may play a role for homeostasis process in cardiac during training. In the present study, we examine the effect of different intensity of treadmill training on cardiac hypertrophy process and autophagy related gene expression in male wistar rats. METHODS: Three different intensities of treadmill training were conducted on 15 male wistar rats (Low Intensity: 10 m/minute, Moderate Intensity: 20 m/minute, and High Intensity: 30 m/minute) compared to 5 sedentary rats as control. Training duration was 30 min per day, frequency was 5 days per week, during 8 weeks period. Heart weight and heart weight/body weight ratio were measured after the experiments. Left ventricle myocardium was taken for microscopic analysis with HE staining. mRNA was extracted from left ventricle myocardium for examining αMHC and autophagy related gene expression (PIK3CA, mTOR, LC3, p62) using semi quantitative PCR. RESULTS: We observed that altered training intensity might stimulate cardiac hypertrophy process. MI and HI training increased heart weight and heart weight/body weight ratio. This finding is supported by microscopic result in which cardiac hypertrophy was found in MI and HI, with focal fibrosis in HI, and increased αMHC gene expression in MI (p < 0.05) and HI (p = 0.076). We also observed decreased PIK3CA (LI 0.8 fold, MI 0.9 fold), mTOR (LI 0.9 fold, MI 0.9 fold), LC3 (LI 0.9 fold, MI 0.8 fold, HI 0.8 fold), and p62 (LI 0.8 fold, MI 0.9 fold) compared to control. Interestingly, we found increased mTOR (HI 1.1 fold) and p62 (HI 1.1 fold) compared to control. CONCLUSION: Training with different intensity creates different cardiac hypertrophy process based on heart weight and heart weight/body weight ratio, microscopic examination and autophagy related gene expression.

8.
J Sports Sci Med ; 18(1): 146-154, 2019 03.
Article in English | MEDLINE | ID: mdl-30787662

ABSTRACT

Exercise-induced skeletal muscle adaptation requires degradation of cellular components carried out by autophagy. However, the alteration of autophagy by different intensity of exercise in skeletal muscle is still unknown. In the present study, we investigate whether low, moderate, and high-intensity exercises have different impacts on autophagy gene expression in gastrocnemius and soleus muscles of wistar rats. This work is limited because only rats are used, and does not cover human tissues. Twenty male wistar rats were assigned to four groups: sedentary control, low-intensity (LI, 10 m/minute), moderate-intensity (MI, 20 m/minute), and high-intensity (HI, 30 m/minute) exercises. Training was conducted 30 minutes/day with a 5 times/week interval for 8 weeks. RNA and protein were extracted from gastrocnemius and soleus muscles then stored in -80°C. Specific primers and antibodies for autophagy genes and protein levels were utilized for semi-quantitative PCR and Western Blot. Exercises decrease expression of autophagy gene LC3 (LI and MI 0.7 fold, HI 0.8 fold, p < 0.05) in gastrocnemius muscles and soleus muscle (LI, MI, and HI 0.8 fold, p < 0.05) compared to control. On the other side, we observed p62 gene expression decreased in gastrocnemius (0.8 fold, p < 0.05) and soleus (0.9 fold, p < 0.05) muscles with MI, but increased in soleus (1.1 fold, p < 0.05) muscles with HI. This result is consistent with the change of protein level, suggesting that autophagy might be modulated by different type of exercise. This study suggests that intensity of exercise and different type of muscle fibers effect autophagy gene expression in skeletal muscle of wistar rats. MI exercise increases autophagy gene expression in gastrocnemius and soleus muscles, but HI exercise decreases autophagy gene expression in soleus muscles of wistar rats. Soleus muscles are more responsive to exercise compared to gastrocnemius muscles.


Subject(s)
Autophagy , Gene Expression , Muscle Fibers, Skeletal/metabolism , Muscle, Skeletal/metabolism , Physical Conditioning, Animal/physiology , Animals , Body Weight , Male , Microtubule-Associated Proteins/genetics , Microtubule-Associated Proteins/metabolism , Organ Size , RNA, Messenger/genetics , RNA, Messenger/metabolism , Rats, Wistar , Sequestosome-1 Protein/genetics , Sequestosome-1 Protein/metabolism
9.
Article in English | MEDLINE | ID: mdl-30647761

ABSTRACT

The sarcopenic phenotype is characterized by a reduction of muscle mass, a shift in fiber-type distribution, and reduced satellite cell regeneration. Sarcopenia is still a major challenge to healthy aging. Traditional Indonesian societies in Sulawesi island have been using nutmeg for maintaining health condition during aging. Interestingly, nutmeg has been known to stimulate peroxisome proliferator activated receptors γ (PPARγ) which may contribute to myogenesis process in cardiac muscle. There is limited information about the role of nutmeg extract into physiological health benefit during aging especially myogenesis process in skeletal muscle. In the present study, we want to explore the potential effect of nutmeg in preserving skeletal muscle mass of aging rats. Aging rats, 80 weeks old, were divided into two groups (control and nutmeg). Nutmeg extract was administered for 12 weeks by gavaging. After treatment, rats were anaesthesized, then soleus and gastrocnemius muscles were collected, weighted, frozen using liquid nitrogen, and stored at -80°C until use. We observed phenomenon that nutmeg increased a little but significant food consumption on week 12, but significant decrease in body weight on weeks 10 and 12 unexpectedly increased significantly in soleus muscle weight (p<0.05). Nutmeg extract increased significantly gene expression of myogenic differentiation (MyoD), paired box 7 (Pax7), myogenin, myosin heavy chain I (MHC I), and insulin-like growth factor I (p<0.01) in soleus muscle. Furthermore, nutmeg increased serine/threonine kinase (AKT) protein levels and activation of mammalian target of rapamycin (mTOR), inhibited autophagy activity, and stimulated or at least preserved muscle mass during aging. Taken together, nutmeg extract may increase muscle mass or prevent decrease of muscle wasting in soleus muscle by partly stimulating myogenesis, regeneration process, and preserving muscle mass via IGF-AKT-mTOR pathway leading to inhibition of autophagy activity during aging. This finding may reveal the potential nutmeg benefits as alternative supplement for preserving skeletal muscle mass and preventing sarcopenia in elderly.

10.
J Evid Based Complementary Altern Med ; 22(3): 436-440, 2017 07.
Article in English | MEDLINE | ID: mdl-27821610

ABSTRACT

The aim of this study was to evaluate burn wound healing activity of coconut shell liquid smoke (CS-LS) in a burn wound animal model. Burn wound-induced mice were treated with CS-LS (CS-LS group), povidone iodine 10% (povidone group), or NaCl 0.9% (NaCl group). Application of CS-LS promoted wound contraction compared to that of the povidone and NaCl groups ( P < .05). This study showed a positive correlation between the number of fibroblasts and wound contraction. The number of fibroblasts was highest in the CS-LS group, compared to that of the povidone and NaCl groups ( P < .05). In conclusion, CS-LS promotes burn wound healing by one possible mechanism, by increasing the number of fibroblasts. The results indicate that further experimental trials are needed to develop CS-LS as an alternative topical drug for burn wound healing.


Subject(s)
Burns/drug therapy , Cocos , Smoke , Wound Healing/drug effects , Animals , Fibroblasts/drug effects , Male , Mice , Povidone-Iodine/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...