Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 30
Filter
1.
Eur J Med Chem ; 274: 116557, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38850857

ABSTRACT

Design and synthesis of novel 4-carboxamidopyrido[3,2-b]pyridine derivatives as novel rigid analogues of sorafenib are reported herein. The target compounds showed potent antiproliferative activities against a panel of NCI-60 cancer cell lines as well as hepatocellular carcinoma cell line. Compounds 8g and 9f were among the most promising derivatives in terms of effectiveness and safety. Therefore, they were further examined to demonstrate their ability to induce apoptosis and alter cell cycle progression in hepatocellular carcinoma cells. The most potent compounds were tested against a panel of kinases that indicated their selectivity against FMS kinase. Compounds 8g and 8h showed the most potent activities against FMS kinase with IC50 values of 21.5 and 73.9 nM, respectively. The two compounds were also tested in NanoBRET assay to investigate their ability to inhibit FMS kinase in cells (IC50 = 563 nM (8g) and 1347 nM (8h) vs. IC50 = 1654 nM for sorafenib). Furthermore, compounds 8g and 8h possess potent inhibitory activities against macrophages when investigated in bone marrow-derived macrophages (BMDM) assay (IC50 = 56 nM and 167 nM, respectively, 164 nM for sorafenib). The safety and selectivity of these compounds were confirmed when tested against normal cell lines. Their safety profile was further confirmed using hERG assay. In silico studies were carried out to investigate their binding modes in the active site of FMS kinase, and to develop a QSAR model for these new motifs.


Subject(s)
Antineoplastic Agents , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Protein Kinase Inhibitors , Pyridines , Humans , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Protein Kinase Inhibitors/pharmacology , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Pyridines/pharmacology , Pyridines/chemistry , Pyridines/chemical synthesis , Cell Proliferation/drug effects , Structure-Activity Relationship , Molecular Structure , Apoptosis/drug effects , Dose-Response Relationship, Drug , Cell Line, Tumor , Animals , Molecular Docking Simulation , Mice
2.
Int J Mol Sci ; 25(10)2024 May 07.
Article in English | MEDLINE | ID: mdl-38791108

ABSTRACT

Prostate cancer (PCa) is a significant global contributor to mortality, predominantly affecting males aged 65 and above. The field of omics has recently gained traction due to its capacity to provide profound insights into the biochemical mechanisms underlying conditions like prostate cancer. This involves the identification and quantification of low-molecular-weight metabolites and proteins acting as crucial biochemical signals for early detection, therapy assessment, and target identification. A spectrum of analytical methods is employed to discern and measure these molecules, revealing their altered biological pathways within diseased contexts. Metabolomics and proteomics generate refined data subjected to detailed statistical analysis through sophisticated software, yielding substantive insights. This review aims to underscore the major contributions of multi-omics to PCa research, covering its core principles, its role in tumor biology characterization, biomarker discovery, prognostic studies, various analytical technologies such as mass spectrometry and Nuclear Magnetic Resonance, data processing, and recent clinical applications made possible by an integrative "omics" approach. This approach seeks to address the challenges associated with current PCa treatments. Hence, our research endeavors to demonstrate the valuable applications of these potent tools in investigations, offering significant potential for understanding the complex biochemical environment of prostate cancer and advancing tailored therapeutic approaches for further development.


Subject(s)
Biomarkers, Tumor , Metabolomics , Prostatic Neoplasms , Proteomics , Humans , Male , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/diagnosis , Metabolomics/methods , Proteomics/methods , Biomarkers, Tumor/metabolism , Data Analysis , Mass Spectrometry/methods
3.
iScience ; 27(1): 108659, 2024 Jan 19.
Article in English | MEDLINE | ID: mdl-38235331

ABSTRACT

The development of hybrid compounds has been widely considered as a promising strategy to circumvent the difficulties that emerge in cancer treatment. The well-established strategy of adding acetyl groups to certain drugs has been demonstrated to enhance their therapeutic efficacy. Based on our previous work, an approach of accommodating two chemical entities into a single structure was implemented to synthesize new acetylated hybrids (HH32 and HH33) from 5-aminosalicylic acid and 4-thiazolinone derivatives. These acetylated hybrids showed potential anticancer activities and distinct metabolomic profile with antiproliferative properties. The in-silico molecular docking predicts a strong binding of HH32 and HH33 to cell cycle regulators, and transcriptomic analysis revealed DNA repair and cell cycle as the main targets of HH33 compounds. These findings were validated using in vitro models. In conclusion, the pleiotropic biological effects of HH32 and HH33 compounds on cancer cells demonstrated a new avenue to develop more potent cancer therapies.

4.
Eur J Med Chem ; 254: 115380, 2023 Jun 05.
Article in English | MEDLINE | ID: mdl-37075625

ABSTRACT

The recent emergence of different SARS-CoV-2 variants creates an urgent need to develop more effective therapeutic agents to prevent COVID-19 outbreaks. Among SARS-CoV-2 essential proteases is papain-like protease (SARS-CoV-2 PLpro), which plays multiple roles in regulating SARS-CoV-2 viral spread and innate immunity such as deubiquitinating and deISG15ylating (interferon-induced gene 15) activities. Many studies are currently focused on targeting this protease to tackle SARS-CoV-2 infection. In this context, we performed a phenotypic screening using an in-house pilot compounds collection possessing a diverse skeleta against SARS-CoV-2 PLpro. This screen identified SIMR3030 as a potent inhibitor of SARS-CoV-2. SIMR3030 has been shown to exhibit deubiquitinating activity and inhibition of SARS-CoV-2 specific gene expression (ORF1b and Spike) in infected host cells and possessing virucidal activity. Moreover, SIMR3030 was demonstrated to inhibit the expression of inflammatory markers, including IFN-α, IL-6, and OAS1, which are reported to mediate the development of cytokine storms and aggressive immune responses. In vitro absorption, distribution, metabolism, and excretion (ADME) assessment of the drug-likeness properties of SIMR3030 demonstrated good microsomal stability in liver microsomes. Furthermore, SIMR3030 demonstrated very low potency as an inhibitor of CYP450, CYP3A4, CYP2D6 and CYP2C9 which rules out any potential drug-drug interactions. In addition, SIMR3030 showed moderate permeability in Caco2-cells. Critically, SIMR3030 has maintained a high in vivo safety profile at different concentrations. Molecular modeling studies of SIMR3030 in the active sites of SARS-CoV-2 and MERS-CoV PLpro were performed to shed light on the binding modes of this inhibitor. This study demonstrates that SIMR3030 is a potent inhibitor of SARS-CoV-2 PLpro that forms the foundation for developing new drugs to tackle the COVID-19 pandemic and may pave the way for the development of novel therapeutics for a possible future outbreak of new SARS-CoV-2 variants or other Coronavirus species.


Subject(s)
COVID-19 , Papain , Humans , Papain/chemistry , Papain/genetics , Papain/metabolism , SARS-CoV-2 , Protease Inhibitors/pharmacology , Caco-2 Cells , Pandemics , Peptide Hydrolases/metabolism , Antiviral Agents/pharmacology , Antiviral Agents/chemistry
5.
Bioorg Med Chem ; 69: 116894, 2022 09 01.
Article in English | MEDLINE | ID: mdl-35764033

ABSTRACT

The design, synthesis, and biological activities of a new series of pyrazole derivatives are reported. The target compounds 1a-1w were initially investigated against NCI-60 cancer cell lines. Compounds 1f, 1h, 1k, and 1v exerted the highest anti-proliferative activity over the studied panel of cancer cell lines. Compound 1f showed the most potent activity, and it is more potent than sorafenib in 29 cancer cell lines of different types and more potent than SP600125 against almost all the tested cancer cell lines. It also exerted sub-micromolar IC50 values (0.54-0.98 µM) against nine cell lines. Moreover, the 23 target compounds were tested against Hep3B and HepG2 hepatocellular carcinoma cell lines, of which compounds 1b, 1c, and 1h showed the strongest anti-proliferative activity. The most potent anticancer compounds (1b, 1c, 1f, and 1h) demonstrated a high selectivity towards cancer cells vis-à-vis normal cells. Compounds1f and 1h induced apoptosis and mild necrosis upon testing against RPMI-8226 leukemia cells. Kinase profiling of this series led to the discovery of two potent and selective JNK3 inhibitors, compounds 1c and 1f with an IC50 values of 99.0 and 97.4 nM, respectively. Both compounds showed a good inhibitory effect against JNK3 kinase in the whole-cell NanoBRET assay. This finding was further supported through molecular modeling studies with the JNK3 binding site. Moreover, compounds 1c and 1f demonstrated a very weak activity against CYP 2D6, CYP 3A4, and hERG ion channels.


Subject(s)
Antineoplastic Agents , Liver Neoplasms , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation , Drug Design , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Protein Kinase Inhibitors/chemistry , Pyrazoles/chemistry , Structure-Activity Relationship
6.
Eur J Med Chem ; 238: 114434, 2022 Aug 05.
Article in English | MEDLINE | ID: mdl-35551038

ABSTRACT

This article describes the design, synthesis, and biological screening of a new series of diarylurea and diarylamide derivatives including quinoline core armed with dimethylamino or morpholino side chain. Fifteen target compounds were selected by the National Cancer Institute (NCI, USA) for in vitro antiproliferative screening against a panel of 60 cancer cell lines of nine cancer types. Compounds 1j-l showed the highest mean inhibition percentage values over the 60-cell line panel at 10 µM with broad-spectrum antiproliferative activity. Subsequently, compounds 1j-l were subjected to a dose-response study to measure their GI50 and total growth inhibition (TGI) values against the cell lines. Three of the tested molecules exerted higher potency against most of the cell lines than the reference drug, sorafenib. Compound 1l indicated a higher potency than sorafenib against 53 of tested cancer cell lines. Compounds 1j-l demonstrated promising selectivity against cancer cells than normal cells. Moreover, compound 1l induced apoptosis and necrosis in RPMI-8226 cell line in a dose-dependent manner. In addition, compounds 1j-l were tested against C-RAF kinase as a potential molecular target. The three compounds showed high potency, and the most potent C-RAF kinase inhibitor was compound 1j with an IC50 value of 0.067 µM. In addition, Compounds 1j-l were further tested at 1 µM concentration against a panel of another twelve kinases and they showed a high selectivity for C-RAF kinase. Molecular modeling studies were performed to illuminate on the putative binding interactions of these motifs in the active site of C-RAF kinase. Additional studies were conducted to measure aqueous solubility, partition coefficient, and Caco-2 permeability of the most promising derivatives.


Subject(s)
Antineoplastic Agents , Hydroxyquinolines , Quinolines , Antineoplastic Agents/chemistry , Caco-2 Cells , Cell Line, Tumor , Cell Proliferation , Dose-Response Relationship, Drug , Drug Design , Drug Screening Assays, Antitumor , Humans , Hydroxyquinolines/pharmacology , Molecular Structure , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins c-raf/pharmacology , Quinolines/chemistry , Sorafenib/pharmacology , Structure-Activity Relationship
7.
Molecules ; 26(23)2021 Dec 05.
Article in English | MEDLINE | ID: mdl-34885957

ABSTRACT

HER4 is a receptor tyrosine kinase that is required for the evolution of normal body systems such as cardiovascular, nervous, and endocrine systems, especially the mammary glands. It is activated through ligand binding and activates MAPKs and PI3K/AKT pathways. HER4 is commonly expressed in many human tissues, both adult and fetal. It is important to understand the role of HER4 in the treatment of many disorders. Many studies were also conducted on the role of HER4 in tumors and its tumor suppressor function. Mostly, overexpression of HER4 kinase results in cancer development. In the present article, we reviewed the structure, location, ligands, physiological functions of HER4, and its relationship to different cancer types. HER4 inhibitors reported mainly from 2016 to the present were reviewed as well.


Subject(s)
Neoplasms/metabolism , Protein Kinase Inhibitors/pharmacology , Receptor, ErbB-4/metabolism , Animals , Humans , Neoplasms/drug therapy , Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Protein Kinase Inhibitors/therapeutic use , Proto-Oncogene Proteins c-akt/metabolism , Receptor, ErbB-4/analysis , Receptor, ErbB-4/antagonists & inhibitors , Signal Transduction/drug effects
8.
Pharmaceuticals (Basel) ; 14(7)2021 Jul 15.
Article in English | MEDLINE | ID: mdl-34358107

ABSTRACT

The emergence of the COVID-19 pandemic has mandated the instant (re)search for potential drug candidates. In response to the unprecedented situation, it was recognized early that repurposing of available drugs in the market could timely save lives, by skipping the lengthy phases of preclinical and initial safety studies. BenevolentAI's large knowledge graph repository of structured medical information suggested baricitinib, a Janus-associated kinase inhibitor, as a potential repurposed medicine with a dual mechanism; hindering SARS-CoV2 entry and combatting the cytokine storm; the leading cause of mortality in COVID-19. However, the recently-published Adaptive COVID-19 Treatment Trial-2 (ACTT-2) positioned baricitinib only in combination with remdesivir for treatment of a specific category of COVID-19 patients, whereas the drug is not recommended to be used alone except in clinical trials. The increased pace of data output in all life sciences fields has changed our understanding of data processing and manipulation. For the purpose of drug design, development, or repurposing, the integration of different disciplines of life sciences is highly recommended to achieve the ultimate benefit of using new technologies to mine BIG data, however, the final say remains to be concluded after the drug is used in clinical practice. This review demonstrates different bioinformatics, chemical, pharmacological, and clinical aspects of baricitinib to highlight the repurposing journey of the drug and evaluates its placement in the current guidelines for COVID-19 treatment.

9.
J Chem Inf Model ; 61(9): 4745-4757, 2021 09 27.
Article in English | MEDLINE | ID: mdl-34403259

ABSTRACT

The main protease of SARS-CoV-2 virus, Mpro, is an essential element for viral replication, and inhibitors targeting Mpro are currently being investigated in many drug development programs as a possible treatment for COVID-19. An in vitro pilot screen of a highly focused collection of compounds was initiated to identify new lead scaffolds for Mpro. These efforts identified a number of hits. The most effective of these was compound SIMR-2418 having an inhibitory IC50 value of 20.7 µM. Molecular modeling studies were performed to understand the binding characteristics of the identified compounds. The presence of a cyclohexenone warhead group facilitated covalent binding with the Cys145 residue of Mpro. Our results highlight the challenges of targeting Mpro protease and pave the way toward the discovery of potent lead molecules.


Subject(s)
COVID-19 Drug Treatment , SARS-CoV-2 , Antiviral Agents/pharmacology , Humans , Molecular Docking Simulation , Peptide Hydrolases , Protease Inhibitors/pharmacology
10.
Eur J Med Chem ; 224: 113674, 2021 Nov 15.
Article in English | MEDLINE | ID: mdl-34237622

ABSTRACT

This article reports on novel imidazothiazole derivatives as first-in-class potent and selective ErbB4 (HER4) inhibitors. There are no other reported selective inhibitors of this kinase in the literature, that's why they are considered as first-in-class. In addition, none of the reported non-selective ErbB4 inhibitors possesses imidazothiazole nucleus in its structure. Therefore, there is novelty in this work in both kinase selectivity and chemical structure. Compounds Ik and IIa are the most potent ErbB4 kinase inhibitor (IC50 = 15.24 and 17.70 nM, respectively). Compound Ik showed promising antiproliferative activity. It is selective towards cancer cell lines than normal cells. Its ability to penetrate T-47D cell membrane and inhibit ErbB4 kinase inside the cells has been confirmed. Moreover, both compound Ik and IIa have additional merits such as weak potency against hERG ion channels and against CYP 3A4 and 2D6. Molecular docking and dynamic simulation studies were carried out to explain binding interactions.


Subject(s)
Protein Kinase Inhibitors/chemistry , Receptor, ErbB-4/antagonists & inhibitors , Thiazoles/chemistry , Binding Sites , Catalytic Domain , Cell Line, Tumor , Cell Proliferation/drug effects , Drug Design , Drug Screening Assays, Antitumor , Humans , Imidazoles/chemistry , Molecular Docking Simulation , Protein Kinase Inhibitors/metabolism , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Proto-Oncogene Proteins B-raf/metabolism , Receptor, ErbB-4/metabolism , Structure-Activity Relationship , Thiazoles/metabolism , Thiazoles/pharmacology
11.
Sci Rep ; 11(1): 7062, 2021 03 29.
Article in English | MEDLINE | ID: mdl-33782460

ABSTRACT

Camel milk has been gaining immmense importance due to high nutritious value and medicinal properties. Peptides from milk proteins is gaining popularity in various therapeutics including human cancer. The study was aimed to investigate the anti-cancerous and anti-inflammatory properties of camel whey protein hydrolysates (CWPHs). CWPHs were generated at three temperatures (30 â„ƒ, 37 â„ƒ, and 45 â„ƒ), two hydrolysis timepoints (120 and 360 min) and with three different enzyme concentrations (0.5, 1 and 2 %). CWPHs demonstrated an increase in anti-inflammatory effect between 732.50 (P-6.1) and 3779.16 (P-2.1) µg Dicolfenac Sodium Equivalent (DSE)/mg protein. CWPHs (P-4.3 & 5.2) inhibited growth of human colon carcinoma cells (HCT116) with an IC50 value of 231 and 221 µg/ml, respectively. P-4.3 induced G2/M cell cycle arrest and modulated the expression of Cdk1, p-Cdk1, Cyclin B1, p-histone H3, p21 and p53. Docking of two peptides (AHLEQVLLR and ALPNIDPPTVER) from CWPHs (P-4.3) identified Polo like kinase 1 as a potential target, which strongly supports our in vitro data and provides an encouraging insight into developing a novel peptide-based anticancer formulation. These results suggest that the active component, CWPHs (P-4.3), can be further studied and modeled to form a small molecule anti-cancerous therapy.


Subject(s)
Cell Division/drug effects , Colorectal Neoplasms/pathology , G2 Phase/drug effects , Whey Proteins/pharmacology , Animals , Camelus , Humans
12.
Eur J Med Chem ; 210: 113081, 2021 Jan 15.
Article in English | MEDLINE | ID: mdl-33310290

ABSTRACT

Sorafenib is one of the clinically used anticancer agents that inhibits several kinases. In this study, novel indole-based rigid analogues of sorafenib were designed and synthesized in order to enhance kinase selectivity and hence minimize the side effects associated with its use. The target compounds possess different linkers; urea, amide, sulfonamide, or thiourea, in addition to different terminal aryl moieties attached to the linker in order to investigate their impact on biological activity. They were tested against Hep3B, Huh7, and Hep-G2 hepatocellular carcinoma (HCC) cell lines to study their potency. Among all the tested target derivatives, compound 1h exerted superior antiproliferative potency against all the three tested HCC cell lines compared to sorafenib. Based on these preliminary results, compound 1h was selected for further biological and in silico investigations. Up to 30 µM, compound 1h did not inhibit 50% of the proliferation of WI-38 normal cells, which indicated promising selectivity against HCC cells than normal cells. In addition, compound 1h exerted superior kinase selectivity than sorafenib. It is selective for VEGFR2 and VEGFR3 angiogenesis-related kinases, while sorafenib is a multikinase inhibitor. Superior kinase selectivity of compound 1h to sorafenib can be attributed to its conformationally-restricted indole nucleus and the bulky N-methylpiperazinyl moiety. Western blotting was carried out and confirmed the ability of compound 1h to inhibit VEGFR2 kinase inside Hep-G2 HCC cells in a dose-dependent pattern. Compound 1h induces apoptosis and necrosis in Hep-G2 cell line, as shown by caspase-3/7 and lactate dehydrogenase (LDH) release assays, respectively. Moreover, compound 1h is rather safe against hERG. Thus, we could achieve a more selective kinase inhibitor than sorafenib with retained or even better antiproliferative potency against HCC cell lines. Furthermore, molecular docking and dynamic simulation studies were carried out to investigate its binding mode with VEGFR2 kinase. The molecule has a unique orientation upon binding with the kinase.


Subject(s)
Antineoplastic Agents/pharmacology , Carcinoma, Hepatocellular/drug therapy , Drug Design , Liver Neoplasms/drug therapy , Protein Kinase Inhibitors/pharmacology , Protein Kinases/metabolism , Sorafenib/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , Cell Proliferation/drug effects , Cell Survival/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Liver Neoplasms/metabolism , Liver Neoplasms/pathology , Models, Molecular , Molecular Structure , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Sorafenib/chemical synthesis , Sorafenib/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
13.
J Enzyme Inhib Med Chem ; 35(1): 1712-1726, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32962435

ABSTRACT

A series of imidazothiazole derivatives possessing potential activity against melanoma cells were investigated for molecular mechanism of action. The target compounds were tested against V600E-B-RAF and RAF1 kinases. Compound 1zb is the most potent against both kinases with IC50 values 0.978 and 8.2 nM, respectively. It showed relative selectivity against V600E mutant B-RAF kinase. Compound 1zb was also tested against four melanoma cell lines and exerted superior potency (IC50 0.18-0.59 µM) compared to the reference standard drug, sorafenib (IC50 1.95-5.45 µM). Compound 1zb demonstrated also prominent selectivity towards melanoma cells than normal skin cells. It was further tested in whole-cell kinase assay and showed in-cell V600E-B-RAF kinase inhibition with IC50 of 0.19 µM. Compound 1zb induces apoptosis not necrosis in the most sensitive melanoma cell line, UACC-62. Furthermore, molecular dynamic and 3D-QSAR studies were done to investigate the binding mode and understand the pharmacophoric features of this series of compounds.


Subject(s)
Antineoplastic Agents/chemistry , Melanoma/diet therapy , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Thiazoles/chemistry , Antineoplastic Agents/pharmacology , Carbamates/chemistry , Carbamates/pharmacology , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Humans , Imidazoles/chemistry , Imidazoles/pharmacology , Molecular Dynamics Simulation , Oximes/chemistry , Oximes/pharmacology , Protein Kinase Inhibitors/pharmacology , Quantitative Structure-Activity Relationship , Sorafenib/chemistry , Sorafenib/pharmacology , Sulfonamides/chemistry , Sulfonamides/pharmacology , Thiazoles/pharmacology , Vemurafenib/chemistry , Vemurafenib/pharmacology
14.
Bioorg Chem ; 94: 103378, 2020 01.
Article in English | MEDLINE | ID: mdl-31677858

ABSTRACT

Eicosanoids like leukotrienes and prostaglandins that produced within the arachidonic acid cascade are involved in the pathogenesis of pain, acute and chronic inflammatory diseases. A promising approach for an effective anti-inflammatory therapy is the development of inhibitors targeting more than one enzyme of this cascade. Aiming to develop balanced COX/LOX inhibitors; 4-aminosalicylate based thiazolinones having different substituents at the 5th position of the 4-thiazolinone ring (2-22) were designed, synthesized, characterized and evaluated in vitro and in vivo for their anti-inflammatory activity. Most of the investigated compounds showed high COX-2 inhibitory potencies (IC50 39-200 nM) with selectivity indexes (30-84). Two compounds, 19 and 21, (IC50 = 41 and 44 nM), are equipotent to celecoxib (IC50 = 49 nM), while compound 22 (IC50 = 39 nM) was the most potent. For 15-LOX, compounds 5, 11, 19, 21 and 22 revealed higher potency (IC50 1.5-2.2 µM) than zileuton (IC50 15 µM). Thus, compounds 5, 11, 19, 21 and 22 are potent dual inhibitors of COX-2 and 15-LOX. In vivo anti-inflammatory testing of these compounds revealed that, compounds 5 and 21 had an anti-inflammatory activity similar to indomethacin and celecoxib (% inhibition of oedema = 60 ±â€¯9) and higher than diclofenac potassium (% inhibition = 52 ±â€¯29), while compound 22 (% inhibition = 63 ±â€¯5) was more active than the reference drugs. The results showed that the activity is controlled by the bulkiness and lipophilicity of the substituent at the 5th position. The cytotoxicity results revealed that all compounds are not cytotoxic, additionally, in an experimental model of ulcerogenic effect, the most active compounds 21 and 22 showed better safety profile than indomethacin. Further, at the active sites of the COX-1, COX-2 and 15-LOX co-crystal, 19, 21, and 22 showed high binding forces in free binding energy study, which is consistent with in vitro and in vivo results. In conclusion, these compounds are good candidates for further biological investigation as potential anti-inflammatory drugs with dual balanced inhibition of COX and 15-LOX and good safety profile.


Subject(s)
Aminosalicylic Acid/pharmacology , Anti-Inflammatory Agents, Non-Steroidal/pharmacology , Arachidonate 15-Lipoxygenase/metabolism , Cyclooxygenase 2 Inhibitors/pharmacology , Cyclooxygenase 2/metabolism , Lipoxygenase Inhibitors/pharmacology , Thiazoles/pharmacology , Administration, Oral , Aminosalicylic Acid/administration & dosage , Aminosalicylic Acid/chemistry , Animals , Anti-Inflammatory Agents, Non-Steroidal/administration & dosage , Anti-Inflammatory Agents, Non-Steroidal/chemistry , Carrageenan , Cell Line, Tumor , Cyclooxygenase 2 Inhibitors/administration & dosage , Cyclooxygenase 2 Inhibitors/chemistry , Dose-Response Relationship, Drug , Edema/chemically induced , Edema/drug therapy , Humans , Indomethacin , Lipoxygenase Inhibitors/administration & dosage , Lipoxygenase Inhibitors/chemistry , Male , Molecular Docking Simulation , Molecular Structure , Rats , Rats, Wistar , Stomach Ulcer/chemically induced , Stomach Ulcer/drug therapy , Structure-Activity Relationship , Thiazoles/administration & dosage , Thiazoles/chemistry
15.
Eur J Med Chem ; 183: 111684, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31520926

ABSTRACT

This article reports the synthesis of new triarylpyrazole derivatives possessing urea or amide linker, and their biological activities at molecular, cellular, and in vivo levels. Compound 2b was the most potent inhibitor of p38α/MAPK14 kinase (IC50 = 22 nM) among this series. Molecular docking studies were conducted to understand the kinase inhibitory variations and the basis of selectivity. Compound 2b was able to inhibit p38α/MAPK14 kinase inside HEK293 cells in nanoBRET cellular kinase assay with EC50 value of 0.55 µM, comparable to the potency of dasatinib. Compound 2b inhibited TNF-α production in lipopolysaccharide-induced THP-1 cells with IC50 value of 58 nM. In addition, compound 2b showed low potency against hERG. It is 622.38 times less potent than E-4031 against hERG, so the risk of cardiotoxicity of the compound is very minimal. Compound 2b showed also high plasma stability in vitro in human and rat plasmas. The in vivo PK profile of compound 2b is acceptable, and its antiinflammatory effect was comparable to diclofenac with no ulcerogenic side effect on stomach.


Subject(s)
Anti-Inflammatory Agents/chemical synthesis , Mitogen-Activated Protein Kinase 14/antagonists & inhibitors , Protein Kinase Inhibitors/chemical synthesis , Pyrazoles/chemical synthesis , Amides/chemistry , Animals , Anti-Inflammatory Agents/pharmacology , Cell Line , Drug Discovery , Humans , Male , Molecular Docking Simulation , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Rats , Urea/chemistry
16.
Bioorg Med Chem ; 27(4): 655-663, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30660499

ABSTRACT

A series of 20 triarylpyrazole derivatives containing amide or urea linker have been synthesized. Their in vitro antiproliferative activity against NCI-60 cancer cell lines panel has been reported. Upon investigating the mechanism of action at molecular level, compound 1e showed selectivity and potency against V600E-B-RAF (IC50 = 390 nM). Herein, we decided to investigate the potency of the other nineteen target compounds against V600E-B-RAF. This led to discovery of several more potent compounds against that kinase. The IC50 values of compounds 1g-i and 2f-i were within the range of 7-47 nM. Among them, the diarylurea compound 1i was the most potent (IC50 = 7 nM). Results of docking and molecular dynamic analysis suggested the presence of consistent binding mode among our compound series with type-IIA class of inhibition pattern. Subsequently, the contribution of structural features to bioactivity were explored by means of QSAR analysis, where such effort led to the development of predictive QSAR model with significant statistical parameters (R2 = 0.912, F = 38.64, Q2LOO = 0.834, Q2LMO = 0.816, s = 0.334). Furthermore, pharmacophoric features existed among our compound series were investigated employing molecular interaction field (MIF) analysis, which led to the development of partial least squares model consisted of four latent variables (4LV-PLS) with statistical parameters of (R2acc. = 0.98, Q2acc. = 0.81).


Subject(s)
Drug Discovery , Protein Kinase Inhibitors/chemistry , Proto-Oncogene Proteins B-raf/antagonists & inhibitors , Pyrazoles/chemistry , Benzamides/chemistry , Enzyme Assays , Least-Squares Analysis , Molecular Docking Simulation , Molecular Dynamics Simulation , Molecular Structure , Mutation , Phenylurea Compounds/chemistry , Proto-Oncogene Proteins B-raf/genetics , Quantitative Structure-Activity Relationship , Structure-Activity Relationship
17.
Invest New Drugs ; 37(2): 252-261, 2019 04.
Article in English | MEDLINE | ID: mdl-29947013

ABSTRACT

Kinases and phosphatases are important players in growth signaling and are involved in cancer development. For development of targeted cancer therapy, attention is given to kinases rather than phosphatases inhibitors. Src homology region 2 domain-containing protein tyrosine phosphatase2 (SHP2) is overexpressed in different types of cancers. We investigated the SHP2-inhibitory effects of two new 5-aminosalicylate-4-thiazolinones in human cervical (HeLa) and breast (MCF-7 & MDA-MB-231) cancer cells. In-silico molecular docking showed preferential affinity of the two compounds towards the catalytic over the allosteric site of SHP2. An enzymatic assay confirmed the docking results whereby 0.01 µM of both compounds reduced SHP2 activity to 50%. On cellular level, the two compounds significantly reduced the expression of SHP2, KRAS, p-ERK and p-STAT3 in HeLa but not in the other two cell lines. Phosphorylation of AKT and JNK was enhanced in HeLa and MCF7. Both compounds exhibited anti-proliferative/anti-migratory effects on HeLa and MCF7 but not in MDA-MB-231 cells. These results indicate that inhibition of SHP2 and its downstream pathways by the two compounds might be a promising strategy for cancer therapy in some but not all cancer types.


Subject(s)
Enzyme Inhibitors/pharmacology , Gene Expression Regulation, Neoplastic/drug effects , MAP Kinase Signaling System/drug effects , Neoplasms/drug therapy , Protein Tyrosine Phosphatase, Non-Receptor Type 11/antagonists & inhibitors , Thiazoles/pharmacology , Apoptosis , Cell Movement , Cell Proliferation , Enzyme Inhibitors/chemistry , HeLa Cells , Humans , MCF-7 Cells , Mesalamine/chemistry , Neoplasms/metabolism , Neoplasms/pathology , Phosphatidylinositol 3-Kinases/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Thiazoles/chemistry , Tumor Cells, Cultured , raf Kinases/metabolism , ras Proteins/metabolism
18.
J Org Chem ; 84(2): 934-948, 2019 01 18.
Article in English | MEDLINE | ID: mdl-30582335

ABSTRACT

The development of efficient and modular synthetic methods for the synthesis of diverse collection of privileged substructures needed for a drug design and discovery campaign is highly desirable. Benzoxazepine and indolopyrazine ring systems form the core structures of distinct members of biologically significant molecules. Several members of these families have gained attention due to their broad biological activities, which depend on the type of ring-fusion and peripheral substitution patterns. Despite the potential applications of these privileged substructures in drug discovery, efficient, atom-economic, and modular strategies for their access are underdeveloped. Herein, a one-step build/couple/pair strategy that uniquely allows access to diversely functionalized benzoxazepine and indolopyrazine scaffolds is described. The methodology features a one-pot combination of condensation, Mannich, oxidation, and aza-Michael addition reactions, employing a variety of functionalized anilines and aldehydes suitably poised with Micheal acceptor. Scandium triflate (Sc(OTf)3) in acetonitrile (ACN) was found to promote the construction of benzoxazepines scaffolds, while sodium metabisulfite (Na2S2O5) in aqueous EtOH rapidly enhanced the cascade reaction that led to diverse collections of indolopyrazine frameworks. These protocols represent modular, efficient, and atom-economic access of constrained benzoxazepine and indolopyrazine systems with more than 10 points of diversity and large substrate tolerance.

19.
Sci Rep ; 8(1): 16951, 2018 11 16.
Article in English | MEDLINE | ID: mdl-30446676

ABSTRACT

Poor prognoses remain the most challenging aspect of hepatocellular carcinoma (HCC) therapy. Consequently, alternative therapeutics are essential to control HCC. This study investigated the anticancer effects of safranal against HCC using in vitro, in silico, and network analyses. Cell cycle and immunoblot analyses of key regulators of cell cycle, DNA damage repair and apoptosis demonstrated unique safranal-mediated cell cycle arrest at G2/M phase at 6 and 12 h, and at S-phase at 24 h, and a pronounced effect on DNA damage machinery. Safranal also showed pro-apoptotic effect through activation of both intrinsic and extrinsic initiator caspases; indicating ER stress-mediated apoptosis. Gene set enrichment analysis provided consistent findings where UPR is among the top terms of up-regulated genes in response to safranal treatment. Thus, proteins involved in ER stress were regulated through safranal treatment to induce UPR in HepG2 cells.


Subject(s)
Apoptosis/drug effects , Cyclohexenes/pharmacology , DNA Breaks, Double-Stranded/drug effects , Endoplasmic Reticulum Stress/drug effects , Terpenes/pharmacology , Apoptosis/genetics , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/pathology , DNA Repair , Endoplasmic Reticulum Stress/genetics , G2 Phase Cell Cycle Checkpoints/drug effects , G2 Phase Cell Cycle Checkpoints/genetics , Gene Expression Profiling , Gene Expression Regulation, Neoplastic/drug effects , Gene Ontology , Gene Regulatory Networks , Hep G2 Cells , Humans , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Liver Neoplasms/pathology
20.
Org Lett ; 20(3): 836-839, 2018 02 02.
Article in English | MEDLINE | ID: mdl-29327591

ABSTRACT

Employing a build/couple/pair strategy, a serendipitous one-pot protocol for the diastereoselective construction of diverse collections of chromenopyrroles is described. This methodology features an unprecedented five-step cascade including azomethine ylide generation followed by in situ intramolecular [3 + 2]-cycloaddition. Furthermore, this protocol was extended to access enantiopure chromenopyrroles using amino acids as chiral auxiliary. Moreover, postpairing reactions were employed to increase the diversity and complexity of our pilot compound collections.

SELECTION OF CITATIONS
SEARCH DETAIL
...