Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 66
Filter
Add more filters











Publication year range
2.
PLoS One ; 16(5): e0251710, 2021.
Article in English | MEDLINE | ID: mdl-34003873

ABSTRACT

BACKGROUND: Writing and digital storage have largely replaced organic memory for encoding and retrieval of information in the modern era, with a corresponding decrease in emphasis on memorization in Western education. In health professional training, however, there remains a large corpus of information for which memorization is the most efficient means of ensuring: A) that the trainee has the required information readily available; and B) that a foundation of knowledge is laid, upon which the medical trainee builds multiple, complex layers of detailed information during advanced training. The carefully staged progression in early- to late- years' medical training from broad concepts (e.g. gross anatomy and pharmacology) to in-depth, specialised disciplinary knowledge (e.g. surgical interventions and follow-on care post-operatively) has clear parallels to the progression of training and knowledge exposure that Australian Aboriginal youths undergo in their progression from childhood to adulthood to Tribal Elders. METHODS: As part of the Rural Health curriculum and the undergraduate Nutrition and Dietetics program in the Monash University Faculty of Medicine, Nursing, and Health Sciences, we tested Australian Aboriginal techniques of memorization for acquisition and recall of novel word lists by first-year medical students (N = 76). We also examined undergraduate student evaluations (N = 49) of the use of the Australian Aboriginal memory technique for classroom study of foundational biomedical knowledge (the tricarboxylic acid cycle) using qualitative and quantitative analytic methods drawing from Bloom's taxonomy for orders of thinking and learning. Acquisition and recall of word lists were assessed without memory training, or after training in either the memory palace technique or the Australian Aboriginal narrative technique. RESULTS: Both types of memory training improved the number of correctly recalled items and reduced the frequency of specific error types relative to untrained performance. The Australian Aboriginal method resulted in approximately a 3-fold greater probability of improvement to accurate recall of the entire word list (odds ratio = 2.82; 95% c.i. = 1.15-6.90), vs. the memory palace technique (odds ratio = 2.03; 95% c.i. = 0.81-5.06) or no training (odds ratio = 1.5; 95% c.i. = 0.54-4.59) among students who did not correctly recall all list items at baseline. Student responses to learning the Australian Aboriginal memory technique in the context of biomedical science education were overwhelmingly favourable, and students found both the training and the technique enjoyable, interesting, and more useful than rote memorization. Our data indicate that this method has genuine utility and efficacy for study of biomedical sciences and in the foundation years of medical training.


Subject(s)
Curriculum , Education, Medical, Undergraduate , Learning , Memory , Adult , Australia , Female , Humans , Male , Native Hawaiian or Other Pacific Islander , Universities
3.
Exp Physiol ; 105(8): 1256-1267, 2020 08.
Article in English | MEDLINE | ID: mdl-32436635

ABSTRACT

NEW FINDINGS: What is the central question of this study? What is the immediate impact of moderate preterm birth on the structure and function of major conduit arteries using a pre-clinical sheep model? What is the main finding and its importance? Postnatal changes in conduit arteries, including a significant decrease in collagen within the thoracic aortic wall (predominately males), narrowed carotid arteries, reduced aortic systolic blood flow, and upregulation of the mRNA expression of cell adhesion and inflammatory markers at 2 days of age in preterm lambs compared to controls, may increase the risk of cardiovascular impairment in later life. ABSTRACT: The aim of this work was to compare the structure and function of the conduit arteries of moderately preterm and term-born lambs and to determine whether vascular injury-associated genes were upregulated. Time-mated ewes were induced to deliver either preterm (132 ± 1 days of gestation; n = 11 females and n = 10 males) or at term (147 ± 1 days of gestation; n = 10 females and n = 5 males). Two days after birth, ultrasound imaging of the proximal ascending aorta, main, right and left pulmonary arteries, and right and left common carotid arteries was conducted in anaesthetized lambs. Lambs were then killed and segments of the thoracic aorta and left common carotid artery were either snap frozen for real-time PCR analyses or immersion-fixed for histological quantification of collagen, smooth muscle and elastin within the medial layer. Overall there were few differences in vascular structure between moderately preterm and term lambs. However, there was a significant decrease in the proportion of collagen within the thoracic aortic wall (predominantly in males), narrowing of the common carotid arteries and a reduction in peak aortic systolic blood flow in preterm lambs. In addition, there was increased mRNA expression of the cell adhesion marker P-selectin in the thoracic aortic wall and the pro-inflammatory marker IL-1ß in the left common carotid artery in preterm lambs, suggestive of postnatal vascular injury. Early postnatal differences in the function and structure of conduit arteries and evidence of vascular injury in moderately preterm offspring may place them at greater risk of cardiovascular impairment later in life.


Subject(s)
Carotid Arteries/physiopathology , Premature Birth/physiopathology , Pulmonary Artery/physiopathology , Animals , Animals, Newborn , Aorta/physiopathology , Aorta, Thoracic/physiopathology , Collagen/metabolism , Female , Gene Expression , Hemodynamics , Male , Sheep
4.
Br J Pharmacol ; 177(1): 217-233, 2020 01.
Article in English | MEDLINE | ID: mdl-31479151

ABSTRACT

BACKGROUND AND PURPOSE: Endothelium-derived vasoconstriction is a hallmark of vascular dysfunction in hypertension. In some cases, an overproduction of endothelium-derived prostacyclin (PGI2 ) can cause contraction rather than relaxation. Relaxin is well known for its vasoprotective actions, but the possibility that this peptide could also reverse endothelium-derived vasoconstriction has never been investigated. We tested the hypothesis that short-term relaxin treatment mitigates endothelium-derived vasoconstriction in spontaneously hypertensive rats (SHR). EXPERIMENTAL APPROACH: Male Wistar Kyoto rats (WKY) and SHR were subcutaneously infused with either vehicle (20 mmol·L-1 sodium acetate) or relaxin (13.3 µg·kg-1 ·hr-1 ) using osmotic minipumps for 3 days. Vascular reactivity to the endothelium-dependent agonist ACh was assessed in vitro by wire myography. Quantitative PCR and LC-MS were used to identify changes in gene expression of prostanoid pathways and PG production, respectively. KEY RESULTS: Relaxin treatment ameliorated hypertension-induced endothelial dysfunction by increasing NO-dependent relaxation and reducing endothelium-dependent contraction. Notably, short-term relaxin treatment up-regulated mesenteric PGI2 receptor (IP) expression, permitting PGI2 -IP-mediated vasorelaxation. In the aorta, reversal of contraction was accompanied by suppression of the hypertension-induced increase in prostanoid-producing enzymes and reduction in PGI2 -evoked contractions. CONCLUSIONS AND IMPLICATIONS: Relaxin has region-dependent vasoprotective actions in hypertension. Specifically, relaxin has distinct effects on endothelium-derived contracting factors and their associated vasoconstrictor pathways in mesenteric arteries and the aorta. Taken together, these observations reveal the potential of relaxin as a new therapeutic agent for vascular disorders that are associated with endothelium-derived vasoconstriction including hypertension.


Subject(s)
Endothelium, Vascular/drug effects , Endothelium, Vascular/metabolism , Hypertension/drug therapy , Hypertension/metabolism , Relaxin/therapeutic use , Vasoconstriction/drug effects , Animals , Dose-Response Relationship, Drug , Male , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Rats , Rats, Inbred SHR , Rats, Inbred WKY , Relaxin/pharmacology , Vasoconstriction/physiology
5.
Curr Opin Pharmacol ; 45: 42-48, 2019 04.
Article in English | MEDLINE | ID: mdl-31048209

ABSTRACT

Cardiovascular disease is the most common cause of mortality worldwide, accounting for almost 50% of all deaths globally. Vascular endothelial dysfunction and fibrosis are critical in the pathophysiology of cardiovascular disease. Relaxin, an insulin-like peptide, is known to have beneficial actions in the cardiovascular system through its vasoprotective and anti-fibrotic effects. However, relaxin has several limitations of peptide-based drugs such as poor oral bioavailability, laborious, and expensive to synthesize. This review will focus on recent developments in relaxin mimetics, their pharmacology, associated signalling mechanisms, and their therapeutic potential for the management and treatment of cardiovascular disease.


Subject(s)
Cardiovascular Diseases/drug therapy , Peptide Fragments/therapeutic use , Relaxin/therapeutic use , Animals , Biomimetics , Humans
6.
Biol Sex Differ ; 10(1): 21, 2019 04 22.
Article in English | MEDLINE | ID: mdl-31010438

ABSTRACT

BACKGROUND: Exposure to an adverse environment in early life can have lifelong consequences for risk of cardiovascular disease. Maternal alcohol (ethanol) intake is common and associated with a variety of harmful effects to the fetus. However, examining the effects on the cardiovascular system in adult offspring has largely been neglected. The objectives of this study were to investigate the influence of chronic, low ethanol consumption throughout pregnancy on blood pressure, vascular reactivity and wall stiffness, all key determinants of cardiovascular health, in both male and female rat offspring. METHODS: Female Sprague-Dawley rats were fed an ad libitum liquid diet ± 6% vol/vol ethanol throughout pregnancy. Male and female offspring were studied at 12 months of age. Arterial pressure, heart rate and locomotor activity were measured over 7 days via radiotelemetry. Renal lobar arteries were isolated and studied using wire and pressure myography. RESULTS: Basal mean arterial pressure in female ethanol-exposed rats was reduced by ~ 5-6 mmHg compared to control female offspring, whereas arterial pressure was unaffected in male offspring. Ethanol-exposed offspring had an attenuated pressor response to an acute restraint stress, with this effect most evident in females. Renal artery function was not affected by prenatal ethanol exposure. CONCLUSIONS: We show for the first time that low level chronic maternal alcohol intake during pregnancy influences arterial pressure in adult offspring in the absence of fetal growth restriction.


Subject(s)
Alcohol Drinking/adverse effects , Prenatal Exposure Delayed Effects , Renal Artery/physiology , Sex Characteristics , Animals , Arterial Pressure , Female , Male , Maternal-Fetal Exchange , Pregnancy , Rats, Sprague-Dawley , Renal Artery/innervation , Restraint, Physical/physiology , Stress, Physiological/physiology , Vasoconstriction
7.
Microcirculation ; 26(2): e12533, 2019 02.
Article in English | MEDLINE | ID: mdl-30703277
8.
Microcirculation ; 26(2): e12464, 2019 02.
Article in English | MEDLINE | ID: mdl-29876993

ABSTRACT

Early maternal vascular adaptations to pregnancy are predominantly driven by changes in vascular tone, reactivity, and remodeling. Failure of the maternal systemic vasculature to adapt sufficiently can lead to serious complications of pregnancy. The hormone relaxin is widely recognized for its contribution to the essential renal and systemic hemodynamic adaptations in early pregnancy through direct actions on the maternal vasculature. Studies in relaxin gene knockout mice revealed that endogenous relaxin is not only a "pregnancy hormone" but has pleiotropic actions in various tissues in males and non-pregnant females. There is strong interest in relaxin's actions in the vasculature and its utility in the treatment of vascular diseases. Relaxin treatment in rodents for 2-5 days or acute intravenous injection enhances endothelium-dependent relaxation and decreases myogenic tone in resistance arteries. These vascular actions are prolonged, even in the absence of circulating relaxin, and are underpinned by the production of endothelium-derived relaxing factors including nitric oxide, endothelium-derived hyperpolarization, and prostacyclin. Relaxin is also capable of remodeling the vascular wall in a variety of blood vessels in disease conditions. Lessons learned in pregnancy research have aided studies investigating the potential therapeutic potential of relaxin in cardiovascular disease.


Subject(s)
Pregnancy , Relaxin/physiology , Animals , Blood Vessels/drug effects , Cardiovascular Diseases/drug therapy , Female , Hemodynamics/drug effects , Humans , Male , Relaxin/deficiency , Relaxin/therapeutic use , Vasodilation/drug effects
9.
Microcirculation ; 26(2): e12483, 2019 02.
Article in English | MEDLINE | ID: mdl-29908046

ABSTRACT

AKI is a common complication of sepsis and is significantly associated with mortality. Sepsis accounts for more than 50% of the cases of AKI, with a mortality rate of up to 40%. The pathogenesis of septic AKI is complex, but there is emerging evidence that, at least in the first 48 hours, the defects may be functional rather than structural in nature. For example, septic AKI is associated with an absence of histopathological changes, but with microvascular abnormalities and tubular stress. In this context, renal medullary hypoxia due to redistribution of intra-renal perfusion is emerging as a critical mediator of septic AKI. Clinically, vasopressor drugs remain the cornerstone of therapy for maintenance of blood pressure and organ perfusion. However, in septic AKI, there is insensitivity to vasopressors such as norepinephrine, leading to persistent hypotension and organ failure. Vasopressin, angiotensin II, and, paradoxically, α2 -adrenergic receptor agonists (clonidine and dexmedetomidine) may be feasible adjunct therapies for catecholamine-resistant vasodilatory shock. In this review, we outline the recent progress made in understanding how these drugs may influence the renal microcirculation, which represents a crucial step toward developing better approaches for the circulatory management of patients with septic AKI.


Subject(s)
Acute Kidney Injury/etiology , Microcirculation , Sepsis/complications , Acute Kidney Injury/mortality , Adrenergic alpha-2 Receptor Agonists/therapeutic use , Animals , Humans , Kidney/blood supply , Kidney/physiopathology , Sepsis/mortality , Vasoconstrictor Agents/therapeutic use
10.
Pharmacol Res ; 134: 320-331, 2018 08.
Article in English | MEDLINE | ID: mdl-29870806

ABSTRACT

Inhibition of the renin-angiotensin system in early postnatal life is a potential therapeutic approach to prevent long-term cardiovascular and kidney diseases in individuals born small. We determined the long-term effects of juvenile losartan treatment on cardiovascular and kidney function in control male rat offspring and those exposed to uteroplacental insufficiency and born small. Bilateral uterine vessel ligation (Restricted) or sham (Control) surgery was performed in late gestation in Wistar Kyoto rats. At weaning, male offspring were randomly assigned to receive losartan in their drinking water or drinking water alone from 5 to 8 weeks of age, and followed to 26 weeks of age. Systolic blood pressure and kidney function were assessed throughout the study. Pressure myography was used to assess passive mechanical wall properties in mesenteric and femoral arteries from 26-week-old offspring. Losartan treatment for three weeks lowered systolic blood pressure in both Control and Restricted groups but this difference was not sustained after the cessation of treatment. Losartan, irrespective of birth weight, mildly increased renal tubulointerstitial fibrosis when assessed at 26 weeks of age. Mesenteric artery stiffness was increased by the early losartan treatment, and was associated with increased collagen and decreased elastin content. Losartan also exerted long-term increases in fat mass and decreases in skeletal muscle mass. In this study, untreated Restricted offspring did not develop hypertension, vascular dysfunction or kidney changes as anticipated. Regardless, we demonstrate that short-term losartan treatment in the juvenile period negatively affects postnatal growth, and kidney and vascular parameters in adulthood, irrespective of birth weight. The long-term effects of early-life losartan treatment warrant further consideration in settings where the potential benefits may outweigh the risks; i.e. when programmed adulthood diseases are apparent and in childhood cardiovascular and kidney diseases.


Subject(s)
Angiotensin II Type 1 Receptor Blockers/pharmacology , Blood Pressure/drug effects , Fetal Growth Retardation/physiopathology , Hypertension/prevention & control , Kidney/drug effects , Losartan/pharmacology , Renin-Angiotensin System/drug effects , Age Factors , Angiotensin II Type 1 Receptor Blockers/toxicity , Animals , Animals, Newborn , Birth Weight , Female , Femoral Artery/drug effects , Femoral Artery/metabolism , Femoral Artery/physiopathology , Fetal Growth Retardation/metabolism , Fibrosis , Hypertension/metabolism , Hypertension/physiopathology , Kidney/metabolism , Kidney/pathology , Kidney/physiopathology , Losartan/toxicity , Male , Mesenteric Arteries/drug effects , Mesenteric Arteries/metabolism , Mesenteric Arteries/physiopathology , Pregnancy , Rats, Inbred WKY , Vascular Stiffness/drug effects
11.
J Physiol ; 596(23): 5859-5872, 2018 12.
Article in English | MEDLINE | ID: mdl-29604087

ABSTRACT

KEY POINTS: Low weight at birth increases the risk of developing chronic diseases in adulthood A diet that is high in salt is known to elevate blood pressure, which is a major risk factor for cardiovascular and kidney diseases The present study demonstrates that growth restricted male rats have a heightened sensitivity to high dietary salt, in the context of raised systolic blood pressure, reduced urinary sodium excretion and stiffer mesenteric resistance vessels Other salt-induced effects, such as kidney hyperfiltration, albuminuria and glomerular damage, were not exacerbated by being born small The present study demonstrates that male offspring born small have an increased cardiovascular susceptibility to high dietary salt, such that that minimizing salt intake is probably of particular benefit to this at-risk population ABSTRACT: Intrauterine growth restriction increases the risk of developing chronic diseases in adulthood. Lifestyle factors, such as poor dietary choices, may elevate this risk. We determined whether being born small increases the sensitivity to a dietary salt challenge, in the context of hypertension, kidney disease and arterial stiffness. Bilateral uterine vessel ligation or sham surgery (offspring termed Restricted and Control, respectively) was performed on 18-day pregnant Wistar Kyoto rats. Male offspring were allocated to receive a diet high in salt (8% sodium chloride) or remain on standard rat chow (0.52% sodium chloride) from 20 to 26 weeks of age for 6 weeks. Systolic blood pressure (tail-cuff), renal function (24 h urine excretions) and vascular stiffness (pressure myography) were assessed. Restricted males were born 15% lighter than Controls and remained smaller throughout the study. Salt-induced hypertension was exacerbated in Restricted offspring, reaching a peak systolic pressure of ∼175 mmHg earlier than normal weight counterparts. The natriuretic response to high dietary salt in Restricted animals was less than in Controls and may explain the early rise in arterial pressure. Growth restricted males allocated to a high salt diet also had increased passive arterial stiffness of mesenteric resistance arteries. Other aspects of renal function, including salt-induced hyperfiltration, albuminuria and glomerular damage, were not exacerbated by uteroplacental insufficiency. The present study demonstrates that male offspring exposed to uteroplacental insufficiency and born small have an increased sensitivity to salt-induced hypertension and arterial remodelling.


Subject(s)
Fetal Growth Retardation/physiopathology , Hypertension/chemically induced , Placental Insufficiency/physiopathology , Sodium Chloride, Dietary/adverse effects , Animals , Blood Pressure , Female , Hypertension/physiopathology , Kidney/pathology , Kidney/physiopathology , Male , Mesenteric Arteries/physiopathology , Pregnancy , Rats, Inbred WKY , Uterus , Vascular Stiffness
12.
Front Physiol ; 9: 255, 2018.
Article in English | MEDLINE | ID: mdl-29623045

ABSTRACT

The uterine vasculature undergoes profound adaptations in response to pregnancy. Augmentation of endothelial vasodilator function and reduced smooth muscle reactivity are factors contributing to uterine artery adaptation and are critical for adequate placental perfusion. The peptide hormone relaxin has an important role in mediating the normal maternal renal vascular adaptations during pregnancy through a reduction in myogenic tone and an increase in flow-mediated vasodilation. Little is known however about the influence of endogenous relaxin on the uterine artery during pregnancy. We tested the hypothesis that relaxin deficiency increases myogenic tone and impairs endothelial vasodilator function in uterine arteries of late pregnant relaxin deficient (Rln-/-) mice. Reactivity of main uterine arteries from non-pregnant and late pregnant wild-type (Rln+/+) and Rln-/- mice was studied using pressure and wire myography and changes in gene expression explored using PCR. Myogenic tone was indistinguishable in arteries from non-pregnant mice. In late pregnancy uterine artery myogenic tone was halved in Rln+/+ mice (P < 0.0001), an adaptation that failed to occur in arteries from pregnant Rln-/- mice. The role of vasodilator prostanoids in the regulation of myogenic tone was significantly reduced in arteries of pregnant Rln-/- mice (P = 0.02). Agonist-mediated endothelium-dependent vasodilation was significantly impaired in non-pregnant Rln-/- mice. With pregnancy, differences in total endothelial vasodilator function were resolved, although there remained an underlying deficiency in the role of vasodilator prostanoids and alterations to the contributions of calcium-activated K+ channels. Fetuses of late pregnant Rln-/- mice were ~10% lighter (P < 0.001) than those of Rln+/+ mice. In conclusion, relaxin deficiency is associated with failed suppression of uterine artery myogenic tone in pregnancy, which likely contributes to reduced uteroplacental perfusion and fetal growth restriction.

14.
J Mol Cell Cardiol ; 111: 96-101, 2017 10.
Article in English | MEDLINE | ID: mdl-28822806

ABSTRACT

A correlation exists between the extent of pericardial adipose and atrial fibrillation (AF) risk, though the underlying mechanisms remain unclear. Selected adipose depots express high levels of aromatase, capable of converting androgens to estrogens - no studies have investigated aromatase occurrence/expression regulation in pericardial adipose. The Women's Health Initiative reported that estrogen-only therapy in women elevated AF incidence, indicating augmented estrogenic influence may exacerbate cardiac vulnerability. The aim of this study was to identify the occurrence of pericardial adipose aromatase, evaluate the age- and sex-dependency of local cardiac steroid synthesis capacity and seek preliminary experimental evidence of a link between pericardial adipose aromatase capacity and arrhythmogenic vulnerability. Both human atrial appendage and epicardial adipose exhibited immunoblot aromatase expression. In rodents, myocardium and pericardial adipose aromatase expression increased >20-fold relative to young controls. Comparing young, aged and aged-high fat diet animals, a significant positive correlation was determined between the total aromatase content of pericardial adipose and the occurrence/duration of triggered atrial arrhythmias. Incidence and duration of arrhythmias were increased in hearts perfused with 17ß-estradiol. This study provides novel report of pericardial adipose aromatase expression. We show that aromatase expression is remarkably upregulated with aging, and aromatase estrogen conversion capacity significantly elevated with obesity-related cardiac adiposity. Our studies suggest an association between adiposity, aromatase estrogenic capacity and atrial arrhythmogenicity - additional investigation is required to establish causality. The potential impact of these findings may be considerable, and suggests that focus on local cardiac steroid conversion (rather than systemic levels) may yield translational outcomes.


Subject(s)
Adipose Tissue/metabolism , Aging/pathology , Aromatase/metabolism , Arrhythmias, Cardiac/therapy , Obesity/therapy , Pericardium/pathology , Translational Research, Biomedical , Animals , Arrhythmias, Cardiac/enzymology , Arrhythmias, Cardiac/pathology , Estradiol/pharmacology , Estrogens/biosynthesis , Female , Heart Atria/drug effects , Heart Atria/pathology , Humans , Male , Mice , Obesity/enzymology , Obesity/pathology , Rats
15.
Microcirculation ; 24(6)2017 08.
Article in English | MEDLINE | ID: mdl-28370794

ABSTRACT

BACKGROUND: Short-term IV sRLX (recombinant human relaxin-2) infusion enhances endothelium-dependent relaxation in mesenteric arteries. This is initially underpinned by increased NO followed by a transition to prostacyclin. The effects of short-term IV sRLX treatment on pressure-induced myogenic tone and vascular remodeling in these arteries are unknown. Therefore, we investigated the effects of sRLX infusion on pressure-induced myogenic tone and passive mechanical wall properties in mesenteric arteries. METHODS: Mesenteric artery myogenic tone and passive mechanics were examined after 48-hours and 10-days infusion of sRLX. Potential mechanisms of action were assessed by pressure myography, qPCR, and Western blot analysis. RESULTS: Neither 48-hours nor 10-days sRLX treatment had significant effects on myogenic tone, passive arterial wall stiffness, volume compliance, or axial lengthening. However, in 48-hours sRLX -treated rats, incubation with the NO synthase blocker L-NAME significantly increased myogenic tone (P<.05 vs placebo), demonstrating an increased contribution of NO to the regulation of myogenic tone. eNOS dimerization, but not phosphorylation, was significantly upregulated in the arteries of sRLX -treated rats. CONCLUSION: In mesenteric arteries, 48-hours sRLX treatment upregulates the role of NO in the regulation of myogenic tone by enhancing eNOS dimerization, without altering overall myogenic tone or vascular remodeling.


Subject(s)
Mesenteric Arteries/drug effects , Muscle Tonus/drug effects , Relaxin/pharmacology , Vascular Remodeling/drug effects , Animals , Nitric Oxide/physiology , Nitric Oxide Synthase Type III/metabolism , Protein Multimerization , Rats , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacology , Relaxin/administration & dosage , Time Factors
16.
Biol Reprod ; 96(4): 895-906, 2017 Apr 01.
Article in English | MEDLINE | ID: mdl-28379296

ABSTRACT

The peptide relaxin has gained considerable attention as a new vasoactive drug, largely through its beneficial therapeutic effects in cardiovascular disease. In this study, we tested the hypothesis that relaxin treatment alleviates systemic vascular dysfunction characteristic of hypertensive diseases of pregnancy. We investigated vascular effects and mechanisms of relaxin action in (i) pregnant relaxin-deficient (Rln-/-) mice with enhanced responses to angiotensin II (AngII) and (ii) arteries pre-incubated ex vivo in trophoblast conditioned media (TCM) to induce endothelial dysfunction. Pregnant Rln-/- mice received 0.5 µg/h recombinant human H2 relaxin (rhRLX: n = 5) or placebo (20 nM sodium acetate; n = 7) subcutaneously via osmotic minipumps for 5 days prior to gestational day 17.5. This treatment protocol significantly reduced AngII-mediated contraction of mesenteric arteries and increased plasma 6-keto prostaglandin F1α. These vascular effects were endothelium independent and likely involve smooth muscle-derived vasodilator prostanoids. In the second study, mesenteric arteries were incubated ex vivo for 24 h at 37°C in TCM, which contained high levels of soluble Flt-1 (>20 ng/ml) and soluble Eng (>1 ng/ml). TCM incubation caused significant reduction in endothelium-dependent relaxation and increased sensitivity to AngII. Co-incubation of arteries with rhRLX for 24 h (n = 6-16/treatment) prevented endothelial dysfunction but had no effect on AngII-mediated contraction. In conclusion, relaxin treatment prevents and/or reverses vascular dysfunction in mesenteric arteries, but acts through different vascular pathways depending on duration of relaxin treatment and type of vascular dysfunction. Overall, our data suggest that relaxin is a potential therapeutic to alleviate maternal systemic vascular dysfunction associated with hypertensive diseases in pregnant women.


Subject(s)
Angiotensin II/pharmacology , Endothelium, Vascular/drug effects , Relaxin/pharmacology , Vasoconstriction/physiology , Animals , Female , Gene Expression Regulation/drug effects , Mice , Mice, Knockout , Pregnancy
17.
Naunyn Schmiedebergs Arch Pharmacol ; 390(4): 397-408, 2017 Apr.
Article in English | MEDLINE | ID: mdl-28074232

ABSTRACT

Endothelial dysfunction is a major risk factor for the vascular complications of diabetes. Increased reactive oxygen species (ROS) generation, a hallmark of diabetes, reduces the bioavailability of endothelial vasodilators, including nitric oxide (NO·). The vascular endothelium also produces the one electron reduced and protonated form of NO·, nitroxyl (HNO). Unlike NO·, HNO is resistant to scavenging by superoxide anions (·O2─). The fate of HNO in resistance arteries in diabetes is unknown. We tested the hypothesis that the vasodilator actions of endogenous and exogenous HNO are preserved in resistance arteries in diabetes. We investigated the actions of HNO in small arteries from the mesenteric and femoral beds as they exhibit marked differences in endothelial vasodilator function following 8 weeks of streptozotocin (STZ)-induced diabetes mellitus. Vascular reactivity was assessed using wire myography and ·O2─ generation using lucigenin-enhanced chemiluminescence. The HNO donor, Angeli's salt, and the NO· donor, DEA/NO, evoked relaxations in both arteries of control rats, and these responses were unaffected by diabetes. Nox2 oxidase expression and ·O2─ generation were upregulated in mesenteric, but unchanged, in femoral arteries of diabetic rats. Acetylcholine-induced endothelium-dependent relaxation was impaired in mesenteric but not femoral arteries in diabetes. The HNO scavenger, L-cysteine, reduced this endothelium-dependent relaxation to a similar extent in femoral and mesenteric arteries from control and diabetic animals. In conclusion, HNO and NO· contribute to the NO synthase (NOS)-sensitive component of endothelium-dependent relaxation in mesenteric and femoral arteries. The role of HNO is sustained in diabetes, serving to maintain endothelium-dependent relaxation.


Subject(s)
Diabetes Mellitus, Experimental/physiopathology , Diabetes Mellitus, Type 1/physiopathology , Femoral Artery/drug effects , Mesenteric Arteries/drug effects , Nitrogen Oxides/pharmacology , Vasodilator Agents/pharmacology , Animals , Femoral Artery/physiology , In Vitro Techniques , Male , Mesenteric Arteries/physiology , Rats, Wistar , Superoxides/metabolism
18.
Microcirculation ; 23(8): 631-636, 2016 11.
Article in English | MEDLINE | ID: mdl-27653183

ABSTRACT

The peptide hormone relaxin is recognized for its connective tissue remodeling actions in the reproductive tract during pregnancy and parturition, but it also has vascular remodeling actions independent of pregnancy. Recombinant human relaxin (serelaxin) treatment in male and non-pregnant female rodents enhances passive arterial compliance in the renal vasculature. This review focuses on serelaxin's actions on passive mechanical wall properties in small arteries and highlights the diversity of responses to serelaxin treatment in rodents. Different experimental approaches (duration of serelaxin treatment, rat strain, age) and animal models of disease (obesity, hypertension) will be considered. Most studies in young rodents demonstrate that serelaxin treatment fails to alter passive compliance in resistance-size arteries (mesenteric and femoral arteries and cerebral parenchymal arterioles), suggesting that serelaxin's beneficial effects are minimal in healthy animals. Short-term serelaxin treatment (5d) in aged, obese, and spontaneously hypertensive rats (SHRs) is largely without effect on passive mechanical wall properties. However, a longer duration of serelaxin treatment in SHRs (14d) enhances passive compliance in large muscular arteries as well as resistance-size arteries. In conclusion, serelaxin is capable of vascular remodeling. Its actions are vascular bed-dependent, more prominent in disease, and likely requires a longer duration of treatment to be effective.


Subject(s)
Arteries/drug effects , Compliance/drug effects , Relaxin/therapeutic use , Animals , Arteries/physiology , Biomechanical Phenomena/drug effects , Disease Models, Animal , Humans , Kidney/blood supply , Rats , Recombinant Proteins/pharmacology , Recombinant Proteins/therapeutic use , Relaxin/pharmacology , Research Design , Time Factors
19.
Trends Pharmacol Sci ; 37(6): 498-507, 2016 06.
Article in English | MEDLINE | ID: mdl-27130518

ABSTRACT

Vascular dysfunction is an important hallmark of cardiovascular disease. It is characterized by increased sensitivity to vasoconstrictors, decreases in the endothelium-derived vasodilators nitric oxide (NO) and prostacyclin (PGI2), and endothelium-derived hyperpolarization (EDH). Serelaxin (recombinant human relaxin) has gained considerable attention as a new vasoactive drug, largely through its beneficial therapeutic effects in acute heart failure. In this review we first describe the contribution of endogenous relaxin to vascular homeostasis. We then provide a comprehensive overview of the novel mechanisms of serelaxin action in blood vessels that differentiate it from other vasodilator drugs and explain how this peptide could be used more widely as a therapeutic to alleviate vascular dysfunction in several cardiovascular diseases.


Subject(s)
Relaxin/pharmacology , Vascular Diseases/drug therapy , Vasodilator Agents/pharmacology , Animals , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/physiopathology , Epoprostenol/metabolism , Heart Failure/drug therapy , Heart Failure/physiopathology , Humans , Nitric Oxide/metabolism , Recombinant Proteins/administration & dosage , Recombinant Proteins/pharmacology , Relaxin/administration & dosage , Vascular Diseases/physiopathology , Vasoconstrictor Agents/pharmacology , Vasodilator Agents/administration & dosage
20.
Am J Physiol Regul Integr Comp Physiol ; 310(9): R847-57, 2016 05 01.
Article in English | MEDLINE | ID: mdl-26936785

ABSTRACT

Pregnancy is associated with reduced peripheral vascular resistance, underpinned by changes in endothelial and smooth muscle function. Failure of the maternal vasculature to adapt correctly leads to serious pregnancy complications, such as preeclampsia. The peptide hormone relaxin regulates the maternal renal vasculature during pregnancy; however, little is known about its effects in other vascular beds. This study tested the hypothesis that functional adaptation of the mesenteric and uterine arteries during pregnancy will be compromised in relaxin-deficient (Rln(-/-)) mice. Smooth muscle and endothelial reactivity were examined in small mesenteric and uterine arteries of nonpregnant (estrus) and late-pregnant (day 17.5) wild-type (Rln(+/+)) and Rln(-/-) mice using wire myography. Pregnancy per se was associated with significant reductions in contraction to phenylephrine, endothelin-1, and ANG II in small mesenteric arteries, while sensitivity to endothelin-1 was reduced in uterine arteries of Rln(+/+) mice. The normal pregnancy-associated attenuation of ANG II-mediated vasoconstriction in mesenteric arteries did not occur in Rln(-/-) mice. This adaptive failure was endothelium-independent and did not result from altered expression of ANG II receptors or regulator of G protein signaling 5 (Rgs5) or increases in reactive oxygen species generation. Inhibition of nitric oxide synthase with l-NAME enhanced ANG II-mediated contraction in mesenteric arteries of both genotypes, whereas blockade of prostanoid production with indomethacin only increased ANG II-induced contraction in arteries of pregnant Rln(+/+) mice. In conclusion, relaxin deficiency prevents the normal pregnancy-induced attenuation of ANG II-mediated vasoconstriction in small mesenteric arteries. This is associated with reduced smooth muscle-derived vasodilator prostanoids.


Subject(s)
Adaptation, Physiological/physiology , Angiotensin II/metabolism , Mesenteric Arteries/physiology , Pregnancy, Animal , Relaxin/metabolism , Animals , Female , Gene Expression Regulation/physiology , Mice , Mice, Knockout , Pregnancy , Pregnancy, Animal/physiology , Receptors, Angiotensin/physiology , Relaxin/genetics , Uterine Artery/physiology , Vasodilation/physiology
SELECTION OF CITATIONS
SEARCH DETAIL