Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Clin Pharmacol Ther ; 115(6): 1428-1440, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38493369

ABSTRACT

In a genome-wide association study of atorvastatin pharmacokinetics in 158 healthy volunteers, the SLCO1B1 c.521T>C (rs4149056) variant associated with increased area under the plasma concentration-time curve from time zero to infinity (AUC0-∞) of atorvastatin (P = 1.2 × 10-10), 2-hydroxy atorvastatin (P = 4.0 × 10-8), and 4-hydroxy atorvastatin (P = 2.9 × 10-8). An intronic LPP variant, rs1975991, associated with reduced atorvastatin lactone AUC0-∞ (P = 3.8 × 10-8). Three UGT1A variants linked with UGT1A3*2 associated with increased 2-hydroxy atorvastatin lactone AUC0-∞ (P = 3.9 × 10-8). Furthermore, a candidate gene analysis including 243 participants suggested that increased function SLCO1B1 variants and decreased activity CYP3A4 variants affect atorvastatin pharmacokinetics. Compared with individuals with normal function SLCO1B1 genotype, atorvastatin AUC0-∞ was 145% (90% confidence interval: 98-203%; P = 5.6 × 10-11) larger in individuals with poor function, 24% (9-41%; P = 0.0053) larger in those with decreased function, and 41% (16-59%; P = 0.016) smaller in those with highly increased function SLCO1B1 genotype. Individuals with intermediate metabolizer CYP3A4 genotype (CYP3A4*2 or CYP3A4*22 heterozygotes) had 33% (14-55%; P = 0.022) larger atorvastatin AUC0-∞ than those with normal metabolizer genotype. UGT1A3*2 heterozygotes had 16% (5-25%; P = 0.017) smaller and LPP rs1975991 homozygotes had 34% (22-44%; P = 4.8 × 10-5) smaller atorvastatin AUC0-∞ than noncarriers. These data demonstrate that genetic variation in SLCO1B1, UGT1A3, LPP, and CYP3A4 affects atorvastatin pharmacokinetics. This is the first study to suggest that LPP rs1975991 may reduce atorvastatin exposure. [Correction added on 6 April, after first online publication: An incomplete sentence ("= 0.017) smaller in heterozygotes for UGT1A3*2 and 34% (22%, 44%; P × 10-5) smaller in homozygotes for LPP noncarriers.") has been corrected in this version.].


Subject(s)
Area Under Curve , Atorvastatin , Cytochrome P-450 CYP3A , Genome-Wide Association Study , Glucuronosyltransferase , Liver-Specific Organic Anion Transporter 1 , Polymorphism, Single Nucleotide , Adult , Female , Humans , Male , Middle Aged , Young Adult , Atorvastatin/pharmacokinetics , Atorvastatin/blood , Cytochrome P-450 CYP3A/genetics , Cytochrome P-450 CYP3A/metabolism , Genotype , Glucuronosyltransferase/genetics , Healthy Volunteers , Hydroxymethylglutaryl-CoA Reductase Inhibitors/pharmacokinetics , Hydroxymethylglutaryl-CoA Reductase Inhibitors/blood , Liver-Specific Organic Anion Transporter 1/genetics , Pharmacogenomic Variants , LIM Domain Proteins/genetics , Cytoskeletal Proteins/genetics
2.
Hum Genomics ; 18(1): 11, 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38303026

ABSTRACT

BACKGROUND: Individual assessment of CYP enzyme activities can be challenging. Recently, the potato alkaloid solanidine was suggested as a biomarker for CYP2D6 activity. Here, we aimed to characterize the sensitivity and specificity of solanidine as a CYP2D6 biomarker among Finnish volunteers with known CYP2D6 genotypes. RESULTS: Using non-targeted metabolomics analysis, we identified 9152 metabolite features in the fasting plasma samples of 356 healthy volunteers. Machine learning models suggested strong association between CYP2D6 genotype-based phenotype classes with a metabolite feature identified as solanidine. Plasma solanidine concentration was 1887% higher in genetically poor CYP2D6 metabolizers (gPM) (n = 9; 95% confidence interval 755%, 4515%; P = 1.88 × 10-11), 74% higher in intermediate CYP2D6 metabolizers (gIM) (n = 89; 27%, 138%; P = 6.40 × 10-4), and 35% lower in ultrarapid CYP2D6 metabolizers (gUM) (n = 20; 64%, - 17%; P = 0.151) than in genetically normal CYP2D6 metabolizers (gNM; n = 196). The solanidine metabolites m/z 444 and 430 to solanidine concentration ratios showed even stronger associations with CYP2D6 phenotypes. Furthermore, the areas under the receiver operating characteristic and precision-recall curves for these metabolic ratios showed equal or better performances for identifying the gPM, gIM, and gUM phenotype groups than the other metabolites, their ratios to solanidine, or solanidine alone. In vitro studies with human recombinant CYP enzymes showed that solanidine was metabolized mainly by CYP2D6, with a minor contribution from CYP3A4/5. In human liver microsomes, the CYP2D6 inhibitor paroxetine nearly completely (95%) inhibited the metabolism of solanidine. In a genome-wide association study, several variants near the CYP2D6 gene associated with plasma solanidine metabolite ratios. CONCLUSIONS: These results are in line with earlier studies and further indicate that solanidine and its metabolites are sensitive and specific biomarkers for measuring CYP2D6 activity. Since potato consumption is common worldwide, this biomarker could be useful for evaluating CYP2D6-mediated drug-drug interactions and to improve prediction of CYP2D6 activity in addition to genotyping.


Subject(s)
Cytochrome P-450 CYP2D6 , Diosgenin , Genome-Wide Association Study , Humans , Cytochrome P-450 CYP2D6/genetics , Paroxetine/pharmacology , Biomarkers , Genotype
3.
Clin Pharmacol Ther ; 115(1): 71-79, 2024 01.
Article in English | MEDLINE | ID: mdl-37786998

ABSTRACT

Ticagrelor and rosuvastatin are often used concomitantly after atherothrombotic events. Several cases of rhabdomyolysis during concomitant ticagrelor and rosuvastatin have been reported, suggesting a drug-drug interaction. We showed recently that ticagrelor inhibits breast cancer resistance protein (BCRP) and organic anion transporting polypeptide (OATP) 1B1, 1B3, and 2B1-mediated rosuvastatin transport in vitro. The aim of this study was to investigate the effects of ticagrelor on rosuvastatin pharmacokinetics in humans. In a randomized, crossover study, 9 healthy volunteers ingested a single dose of 90 mg ticagrelor or placebo, followed by a single 10 mg dose of rosuvastatin 1 hour later. Ticagrelor 90 mg or placebo were additionally administered 12, 24, and 36 hours after their first dose. Ticagrelor increased rosuvastatin area under the plasma concentration-time curve (AUC) and peak plasma concentration 2.6-fold (90% confidence intervals: 1.8-3.8 and 1.7-4.0, P = 0.001 and P = 0.003), and prolonged its half-life from 3.1 to 6.6 hours (P = 0.009). Ticagrelor also decreased the renal clearance of rosuvastatin by 11% (3%-19%, P = 0.032). The N-desmethylrosuvastatin:rosuvastatin AUC0-10h ratio remained unaffected by ticagrelor. Ticagrelor had no effect on the plasma concentrations of the endogenous OATP1B substrates glycodeoxycholate 3-O-glucuronide, glycochenodeoxycholate 3-O-glucuronide, glycodeoxycholate 3-O-sulfate, and glycochenodeoxycholate 3-O-sulfate, or the sodium-taurocholate cotransporting polypeptide substrate taurocholic acid. These data indicate that ticagrelor increases rosuvastatin concentrations more than twofold in humans, probably mainly by inhibiting intestinal BCRP. Because the risk for rosuvastatin-induced myotoxicity increases along with rosuvastatin plasma concentrations, using ticagrelor concomitantly with high doses of rosuvastatin should be avoided.


Subject(s)
Breast Neoplasms , Glucuronides , Humans , Female , Rosuvastatin Calcium/pharmacokinetics , ATP Binding Cassette Transporter, Subfamily G, Member 2/metabolism , Ticagrelor , Cross-Over Studies , Glycochenodeoxycholic Acid , Neoplasm Proteins/metabolism , Drug Interactions , Sulfates/metabolism
4.
Br J Clin Pharmacol ; 89(1): 242-252, 2023 01.
Article in English | MEDLINE | ID: mdl-35942816

ABSTRACT

AIMS: The aim was to comprehensively investigate the effects of genetic variability on the pharmacokinetics of rosuvastatin. METHODS: We conducted a genome-wide association study and candidate gene analyses of single dose rosuvastatin pharmacokinetics in a prospective study (n = 159) and a cohort of previously published studies (n = 88). RESULTS: In a genome-wide association meta-analysis of the prospective study and the cohort of previously published studies, the SLCO1B1 c.521 T > C (rs4149056) single nucleotide variation (SNV) associated with increased area under the plasma concentration-time curve (AUC) and peak plasma concentration of rosuvastatin (P = 1.8 × 10-12 and P = 3.2 × 10-15 ). The candidate gene analysis suggested that the ABCG2 c.421C > A (rs2231142) SNV associates with increased rosuvastatin AUC (P = .0079), while the SLCO1B1 c.388A > G (rs2306283) and SLCO2B1 c.1457C > T (rs2306168) SNVs associate with decreased rosuvastatin AUC (P = .0041 and P = .0076). Based on SLCO1B1 genotypes, we stratified the participants into poor, decreased, normal, increased and highly increased organic anion transporting polypeptide (OATP) 1B1 function groups. The OATP1B1 poor function phenotype associated with 2.1-fold (90% confidence interval 1.6-2.8, P = 4.69 × 10-5 ) increased AUC of rosuvastatin, whereas the OATP1B1 highly increased function phenotype associated with a 44% (16-62%; P = .019) decreased rosuvastatin AUC. The ABCG2 c.421A/A genotype associated with 2.2-fold (1.5-3.0; P = 2.6 × 10-4 ) increased AUC of rosuvastatin. The SLCO2B1 c.1457C/T genotype associated with 28% decreased rosuvastatin AUC (11-42%; P = .01). CONCLUSION: These data suggest roles for SLCO1B1, ABCG2 and SLCO2B1 in rosuvastatin pharmacokinetics. Poor SLCO1B1 or ABCG2 function genotypes may increase the risk of rosuvastatin-induced myotoxicity. Reduced doses of rosuvastatin are advisable for patients with these genotypes.


Subject(s)
Genome-Wide Association Study , Organic Anion Transporters , Rosuvastatin Calcium/pharmacokinetics , Pharmacogenomic Testing , Prospective Studies , Polymorphism, Single Nucleotide , Genotype , Organic Anion Transporters/genetics
5.
Clin Pharmacol Ther ; 112(3): 676-686, 2022 09.
Article in English | MEDLINE | ID: mdl-35652242

ABSTRACT

We investigated genetic determinants of single-dose simvastatin pharmacokinetics in a prospective study of 170 subjects and a retrospective cohort of 59 healthy volunteers. In a microarray-based genomewide association study with the prospective data, the SLCO1B1 c.521T>C (p.Val174Ala, rs4149056) single nucleotide variation showed the strongest, genomewide significant association with the area under the plasma simvastatin acid concentration-time curve (AUC; P = 6.0 × 10-10 ). Meta-analysis with the retrospective cohort strengthened the association (P = 1.6 × 10-17 ). In a stepwise linear regression candidate gene analysis among all 229 participants, SLCO1B1 c.521T>C (P = 1.9 × 10-13 ) and CYP3A4 c.664T>C (p.Ser222Pro, rs55785340, CYP3A4*2, P = 0.023) were associated with increased simvastatin acid AUC. Moreover, the SLCO1B1 c.463C>A (p.Pro155Thr, rs11045819, P = 7.2 × 10-6 ) and c.1929A>C (p.Leu643Phe, rs34671512, P = 5.3 × 10-4 ) variants associated with decreased simvastatin acid AUC. Based on these results and the literature, we classified the volunteers into genotype-predicted OATP1B1 and CYP3A4 phenotype groups. Compared with the normal OATP1B1 function group, simvastatin acid AUC was 273% larger in the poor (90% confidence interval (CI), 137%, 488%; P = 3.1 × 10-6 ), 40% larger in the decreased (90% CI, 8%, 83%; P = 0.036), and 67% smaller in the highly increased function group (90% CI, 46%, 80%; P = 2.4 × 10-4 ). Intermediate CYP3A4 metabolizers (i.e., heterozygous carriers of either CYP3A4*2 or CYP3A4*22 (rs35599367)), had 87% (90% CI, 39%, 152%, P = 6.4 × 10-4 ) larger simvastatin acid AUC than normal metabolizers. These data suggest that in addition to no function SLCO1B1 variants, increased function SLCO1B1 variants and reduced function CYP3A4 variants may affect the pharmacokinetics, efficacy, and safety of simvastatin. Care is warranted if simvastatin is prescribed to patients carrying decreased function SLCO1B1 or CYP3A4 alleles.


Subject(s)
Organic Anion Transporters , Simvastatin , Cytochrome P-450 CYP3A/genetics , Genotype , Humans , Liver-Specific Organic Anion Transporter 1/genetics , Organic Anion Transporters/genetics , Polymorphism, Single Nucleotide , Prospective Studies , Retrospective Studies , Simvastatin/pharmacokinetics
6.
Clin Pharmacol Ther ; 111(5): 1007-1021, 2022 05.
Article in English | MEDLINE | ID: mdl-35152405

ABSTRACT

Statins reduce cholesterol, prevent cardiovascular disease, and are among the most commonly prescribed medications in the world. Statin-associated musculoskeletal symptoms (SAMS) impact statin adherence and ultimately can impede the long-term effectiveness of statin therapy. There are several identified pharmacogenetic variants that impact statin disposition and adverse events during statin therapy. SLCO1B1 encodes a transporter (SLCO1B1; alternative names include OATP1B1 or OATP-C) that facilitates the hepatic uptake of all statins. ABCG2 encodes an efflux transporter (BCRP) that modulates the absorption and disposition of rosuvastatin. CYP2C9 encodes a phase I drug metabolizing enzyme responsible for the oxidation of some statins. Genetic variation in each of these genes alters systemic exposure to statins (i.e., simvastatin, rosuvastatin, pravastatin, pitavastatin, atorvastatin, fluvastatin, lovastatin), which can increase the risk for SAMS. We summarize the literature supporting these associations and provide therapeutic recommendations for statins based on SLCO1B1, ABCG2, and CYP2C9 genotype with the goal of improving the overall safety, adherence, and effectiveness of statin therapy. This document replaces the 2012 and 2014 Clinical Pharmacogenetics Implementation Consortium (CPIC) guidelines for SLCO1B1 and simvastatin-induced myopathy.


Subject(s)
Hydroxymethylglutaryl-CoA Reductase Inhibitors , ATP Binding Cassette Transporter, Subfamily G, Member 2/genetics , Cytochrome P-450 CYP2C9/genetics , Genotype , Humans , Hydroxymethylglutaryl-CoA Reductase Inhibitors/adverse effects , Liver-Specific Organic Anion Transporter 1/genetics , Neoplasm Proteins/genetics , Pharmacogenetics , Rosuvastatin Calcium/adverse effects , Simvastatin/adverse effects
7.
Clin Pharmacol Ther ; 105(2): 448-457, 2019 02.
Article in English | MEDLINE | ID: mdl-29998574

ABSTRACT

CYP3A enzymes participate in the elimination of ticagrelor and the bioactivation of clopidogrel and prasugrel. We studied the effects of functional CYP3A genetic variants (CYP3A4*22; rs35599367 and CYP3A5*3; rs776746) on the pharmacokinetics and pharmacodynamics of ticagrelor, clopidogrel, and prasugrel. Six healthy volunteers with the CYP3A4*1/*22 and CYP3A5*3/*3 genotype (CYP3A4*22 carriers), eight with the CYP3A4*1/*1 and CYP3A5*1/*3 genotype (CYP3A5 expressors), and 11-13 with the CYP3A4*1/*1 and CYP3A5*3/*3 genotypes (controls) ingested single doses of ticagrelor, clopidogrel, and prasugrel on separate occasions. Ticagrelor area under the plasma concentration-time curve (AUC) was 89% (P = 0.004) higher in CYP3A4*22 carriers than in controls. CYP3A4*22 carriers also showed more pronounced platelet inhibition at 24 hours after ticagrelor ingestion than the controls (43% vs. 21%; P = 0.029). The CYP3A5 genotype did not affect ticagrelor pharmacokinetics. Neither CYP3A5 nor CYP3A4 genotypes significantly affected prasugrel or clopidogrel. In conclusion, the CYP3A4*22 allele markedly impairs ticagrelor elimination enhancing its antiplatelet effect.


Subject(s)
Clopidogrel/pharmacokinetics , Cytochrome P-450 CYP3A/metabolism , Platelet Aggregation Inhibitors/pharmacokinetics , Prasugrel Hydrochloride/pharmacokinetics , Ticagrelor/pharmacokinetics , Activation, Metabolic/genetics , Adult , Area Under Curve , Clopidogrel/pharmacology , Female , Genetic Variation , Genotype , Healthy Volunteers , Humans , Male , Platelet Aggregation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Platelet Function Tests , Prasugrel Hydrochloride/pharmacology , Ticagrelor/pharmacology , Young Adult
8.
Basic Clin Pharmacol Toxicol ; 122(3): 341-345, 2018 Mar.
Article in English | MEDLINE | ID: mdl-28990360

ABSTRACT

Several single nucleotide variations (SNVs) affect carboxylesterase 1 (CES1) activity, but the effects of genetic variants on CES1 gene expression have not been systematically investigated. Therefore, our aim was to investigate effects of genetic variants on CES1 gene expression in two independent whole blood sample cohorts of 192 (discovery) and 88 (replication) healthy volunteers and in a liver sample cohort of 177 patients. Furthermore, we investigated possible effects of the found variants on clopidogrel pharmacokinetics (n = 106) and pharmacodynamics (n = 46) in healthy volunteers, who had ingested a single 300 mg or 600 mg dose of clopidogrel. Using massively parallel sequencing, we discovered two CES1 SNVs, rs12443580 and rs8192935, to be strongly and independently associated with a 39% (p = 4.0 × 10-13 ) and 31% (p = 2.5 × 10-8 ) reduction in CES1 whole blood expression per copy of the minor allele. These findings were replicated in the replication cohort. However, these SNVs did not affect CES1 liver expression, or clopidogrel pharmacokinetics or pharmacodynamics. Conversely, the CES1 c.428G>A missense SNV (rs71647871) impaired the hydrolysis of clopidogrel, increased exposure to clopidogrel active metabolite and enhanced its antiplatelet effects. In conclusion, the rs12443580 and rs8192935 variants reduce CES1 expression in whole blood but not in the liver. These tissue-specific effects may result in substrate-dependent effects of the two SNVs on CES1-mediated drug metabolism.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Gene Expression Regulation, Enzymologic , Pharmacogenomic Variants , Platelet Aggregation Inhibitors/pharmacokinetics , Platelet Aggregation/drug effects , Polymorphism, Single Nucleotide , Ticlopidine/analogs & derivatives , Biopsy , Carboxylic Ester Hydrolases/blood , Carboxylic Ester Hydrolases/chemistry , Carboxylic Ester Hydrolases/metabolism , Clopidogrel , Cohort Studies , DNA Mutational Analysis , Dose-Response Relationship, Drug , Female , Finland , Gastric Bypass , Humans , Hydrolysis , Introns , Liver/enzymology , Liver/metabolism , Liver/pathology , Male , Mutation, Missense , Platelet Aggregation Inhibitors/administration & dosage , Platelet Aggregation Inhibitors/blood , Platelet Aggregation Inhibitors/pharmacology , RNA, Messenger/metabolism , Reproducibility of Results , Ticlopidine/administration & dosage , Ticlopidine/blood , Ticlopidine/pharmacokinetics , Ticlopidine/pharmacology
9.
Drug Metab Dispos ; 46(2): 141-150, 2018 02.
Article in English | MEDLINE | ID: mdl-29138287

ABSTRACT

The antiplatelet drug clopidogrel is metabolized to an acyl-ß-d-glucuronide, which causes time-dependent inactivation of CYP2C8. Our aim was to characterize the UDP-glucuronosyltransferase (UGT) enzymes that are responsible for the formation of clopidogrel acyl-ß-d-glucuronide. Kinetic analyses and targeted inhibition experiments were performed using pooled human liver and intestine microsomes (HLMs and HIMs, respectively) and selected human recombinant UGTs based on preliminary screening. The effects of relevant UGT polymorphisms on the pharmacokinetics of clopidogrel were evaluated in 106 healthy volunteers. UGT2B7 and UGT2B17 exhibited the greatest level of clopidogrel carboxylic acid glucuronidation activities, with a CLint,u of 2.42 and 2.82 µl⋅min-1⋅mg-1, respectively. Of other enzymes displaying activity (UGT1A3, UGT1A9, UGT1A10-H, and UGT2B4), UGT2B4 (CLint,u 0.51 µl⋅min-1⋅mg-1) was estimated to contribute significantly to the hepatic clearance. Nonselective UGT2B inhibitors strongly inhibited clopidogrel acyl-ß-d-glucuronide formation in HLMs and HIMs. The UGT2B17 inhibitor imatinib and the UGT2B7 and UGT1A9 inhibitor mefenamic acid inhibited clopidogrel carboxylic acid glucuronidation in HIMs and HLMs, respectively. Incubation of clopidogrel carboxylic acid in HLMs with UDPGA and NADPH resulted in strong inhibition of CYP2C8 activity. In healthy volunteers, the UGT2B17*2 deletion allele was associated with a 10% decrease per copy in the plasma clopidogrel acyl-ß-d-glucuronide to clopidogrel carboxylic acid area under the plasma concentration-time curve from 0 to 4 hours (AUC0-4) ratio (P < 0.05). To conclude, clopidogrel carboxylic acid is metabolized mainly by UGT2B7 and UGT2B4 in the liver and by UGT2B17 in the small intestinal wall. The formation of clopidogrel acyl-ß-d-glucuronide is impaired in carriers of the UGT2B17 deletion. These findings may have implications regarding the intracellular mechanisms leading to CYP2C8 inactivation by clopidogrel.


Subject(s)
Glucuronides/metabolism , Glucuronosyltransferase/metabolism , Minor Histocompatibility Antigens/metabolism , Ticlopidine/analogs & derivatives , Drug Interactions/genetics , Glucuronosyltransferase/genetics , Humans , Intestinal Mucosa/metabolism , Kinetics , Liver/metabolism , Microsomes, Liver/metabolism , Minor Histocompatibility Antigens/genetics , Pharmacogenetics/methods , Ticlopidine/metabolism
10.
Br J Clin Pharmacol ; 80(5): 1131-8, 2015 Nov.
Article in English | MEDLINE | ID: mdl-25919042

ABSTRACT

AIM: The aim of the present study was to investigate the effects of the carboxylesterase 1 (CES1) c.428G > A (p.G143E, rs71647871) single nucleotide variation (SNV) on the pharmacokinetics of quinapril and enalapril in a prospective genotype panel study in healthy volunteers. METHODS: In a fixed-order crossover study, 10 healthy volunteers with the CES1 c.428G/A genotype and 12 with the c.428G/G genotype ingested a single 10 mg dose of quinapril and enalapril with a washout period of at least 1 week. Plasma concentrations of quinapril and quinaprilat were measured for up to 24 h and those of enalapril and enalaprilat for up to 48 h. Their excretion into the urine was measured from 0 h to 12 h. RESULTS: The area under the plasma concentration-time curve from 0 h to infinity (AUC0-∞) of active enalaprilat was 20% lower in subjects with the CES1 c.428G/A genotype than in those with the c.428G/G genotype (95% confidence interval of geometric mean ratio 0.64, 1.00; P = 0.049). The amount of enalaprilat excreted into the urine was 35% smaller in subjects with the CES1 c.428G/A genotype than in those with the c.428G/G genotype (P = 0.044). The CES1 genotype had no significant effect on the enalaprilat to enalapril AUC0-∞ ratio or on any other pharmacokinetic or pharmacodynamic parameters of enalapril or enalaprilat. The CES1 genotype had no significant effect on the pharmacokinetic or pharmacodynamic parameters of quinapril. CONCLUSIONS: The CES1 c.428G > A SNV decreased enalaprilat concentrations, probably by reducing the hydrolysis of enalapril, but had no observable effect on the pharmacokinetics of quinapril.


Subject(s)
Carboxylic Ester Hydrolases/genetics , Enalapril/pharmacokinetics , Polymorphism, Single Nucleotide/genetics , Tetrahydroisoquinolines/pharmacokinetics , Adult , Angiotensin-Converting Enzyme Inhibitors/blood , Angiotensin-Converting Enzyme Inhibitors/pharmacokinetics , Angiotensin-Converting Enzyme Inhibitors/pharmacology , Angiotensin-Converting Enzyme Inhibitors/urine , Blood Pressure/drug effects , Cross-Over Studies , Enalapril/blood , Enalapril/pharmacology , Enalapril/urine , Enalaprilat/blood , Enalaprilat/urine , Female , Genotype , Healthy Volunteers , Heart Rate/drug effects , Humans , Male , Quinapril , Tetrahydroisoquinolines/blood , Tetrahydroisoquinolines/pharmacology , Tetrahydroisoquinolines/urine , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL