Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Sci Rep ; 9(1): 8254, 2019 06 04.
Article in English | MEDLINE | ID: mdl-31164693

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterised by the loss of upper and lower motor neurons. ALS exhibits high phenotypic variability including age and site of onset, and disease duration. To uncover epigenetic and transcriptomic factors that may modify an ALS phenotype, we used a cohort of Australian monozygotic twins (n = 3 pairs) and triplets (n = 1 set) that are discordant for ALS and represent sporadic ALS and the two most common types of familial ALS, linked to C9orf72 and SOD1. Illumina Infinium HumanMethylation450K BeadChip, EpiTYPER and RNA-Seq analyses in these ALS-discordant twins/triplets and control twins (n = 2 pairs), implicated genes with consistent longitudinal differential DNA methylation and/or gene expression. Two identified genes, RAD9B and C8orf46, showed significant differential methylation in an extended cohort of >1000 ALS cases and controls. Combined longitudinal methylation-transcription analysis within a single twin set implicated CCNF, DPP6, RAMP3, and CCS, which have been previously associated with ALS. Longitudinal transcriptome data showed an 8-fold enrichment of immune function genes and under-representation of transcription and protein modification genes in ALS. Examination of these changes in a large Australian sporadic ALS cohort suggest a broader role in ALS. Furthermore, we observe that increased methylation age is a signature of ALS in older patients.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , DNA Methylation/genetics , Epigenesis, Genetic , Genetic Predisposition to Disease , Adult , Aged , Amyotrophic Lateral Sclerosis/epidemiology , Amyotrophic Lateral Sclerosis/pathology , Australia/epidemiology , C9orf72 Protein/genetics , Cell Cycle Proteins/genetics , Diseases in Twins , Female , Gene Expression Regulation , Genetic Association Studies , Humans , Male , Middle Aged , Phenotype , Triplets/genetics , Twins, Monozygotic/genetics , Exome Sequencing
3.
Neurodegener Dis ; 17(6): 304-312, 2017.
Article in English | MEDLINE | ID: mdl-29131108

ABSTRACT

BACKGROUND: Mutations in the genes encoding the heterogeneous nuclear ribonucleoproteins hnRNPA1 and hnRNPA2/B1 have been reported in a multisystem proteinopathy that includes amyotrophic lateral sclerosis (ALS) and inclusion body myopathy associated with Paget disease of the bone and frontotemporal dementia. Mutations were also described in the prion-like domain of hnRNPA1 in patients with classic ALS. Another hnRNP protein, hnRNPA3, has been found to be associated with the ALS/frontotemporal dementia protein C9orf72. OBJECTIVE: To further assess their role in ALS, we examined these hnRNPs in spinal cord tissue from sporadic (SALS) and familial ALS (FALS) patients, including C9orf72 repeat expansion-positive patients, and controls. We also sought to determine the prevalence of HNRNPA1, HNRNPA2B1, and HNRNPA3 mutations in Australian ALS patients. METHODS: Immunostaining was used to assess hnRNPs in ALS patient spinal cords. Mutation analysis of the HNRNPA1, HNRNPA2B1, and HNRNPA3 genes was performed in FALS and of their prion-like domains in SALS patients. RESULTS: Immunostaining of spinal motor neurons of ALS patients with the C9orf72 repeat expansion showed significant mislocalisation of hnRNPA3, and no differences in hnRNPA1 or A2/B1 localisation, compared to controls. No novel or known mutations were identified in HNRNPA1, HNRNPA2B1, or HNRNPA3 in Australian ALS patients. CONCLUSIONS: hnRNPA3 pathology was identified in motor neurons of ALS patients with C9orf72 repeat expansions, implicating hnRNPA3 in the pathogenesis of C9orf72-linked ALS. hnRNPA3 warrants further investigation into the pathogenesis of ALS linked to C9orf72. This study also determined that HNRNP mutations are not a common cause of FALS and SALS in Australia.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Amyotrophic Lateral Sclerosis/pathology , Heterogeneous-Nuclear Ribonucleoprotein Group A-B/genetics , Motor Neurons/pathology , Polymorphism, Single Nucleotide/genetics , Spinal Cord/pathology , Australia/epidemiology , C9orf72 Protein/genetics , Case-Control Studies , DNA Mutational Analysis , Female , Humans , Male
4.
Hum Mol Genet ; 26(14): 2616-2626, 2017 07 15.
Article in English | MEDLINE | ID: mdl-28444311

ABSTRACT

Amyotrophic lateral sclerosis (ALS) is a rapidly progressive, fatal neurodegenerative disease characterised by the death of upper and lower motor neurons. Approximately 10% of cases have a known family history of ALS and disease-linked mutations in multiple genes have been identified. ALS-linked mutations in CCNF were recently reported, however the pathogenic mechanisms associated with these mutations are yet to be established. To investigate possible disease mechanisms, we developed in vitro and in vivo models based on an ALS-linked missense mutation in CCNF. Proteomic analysis of the in vitro models identified the disruption of several cellular pathways in the mutant model, including caspase-3 mediated cell death. Transient overexpression of human CCNF in zebrafish embryos supported this finding, with fish expressing the mutant protein found to have increased levels of cleaved (activated) caspase-3 and increased cell death in the spinal cord. The mutant CCNF fish also developed a motor neuron axonopathy consisting of shortened primary motor axons and increased frequency of aberrant axonal branching. Importantly, we demonstrated a significant correlation between the severity of the CCNF-induced axonopathy and a reduced motor response to a light stimulus (photomotor response). This is the first report of an ALS-linked CCNF mutation in vivo and taken together with the in vitro model identifies the disruption of cell death pathways as a significant consequence of this mutation. Additionally, this study presents a valuable new tool for use in ongoing studies investigating the pathobiology of ALS-linked CCNF mutations.


Subject(s)
Amyotrophic Lateral Sclerosis/genetics , Cyclins/genetics , Frontotemporal Dementia/genetics , Spinal Cord/pathology , Amyotrophic Lateral Sclerosis/metabolism , Amyotrophic Lateral Sclerosis/pathology , Animals , Animals, Genetically Modified , Axons/pathology , Caspase 3/metabolism , Cell Death/genetics , Cyclins/biosynthesis , Cyclins/metabolism , Disease Models, Animal , Frontotemporal Dementia/metabolism , Frontotemporal Dementia/pathology , Humans , Motor Neurons/metabolism , Motor Neurons/pathology , Mutation, Missense , Spinal Cord/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Zebrafish
5.
PLoS One ; 9(12): e113630, 2014.
Article in English | MEDLINE | ID: mdl-25470128

ABSTRACT

Alarm pheromone and its major component isopentylacetate induce stress-like responses in forager honey bees, impairing their ability to associate odors with a food reward. We investigated whether isopentylacetate exposure decreases appetitive learning also in young worker bees. While isopentylacetate-induced learning deficits were observed in guards and foragers collected from a queen-right colony, learning impairments resulting from exposure to this pheromone could not be detected in bees cleaning cells. As cell cleaners are generally among the youngest workers in the colony, effects of isopentylacetate on learning behavior were examined further using bees of known age. Adult workers were maintained under laboratory conditions from the time of adult emergence. Fifty percent of the bees were exposed to queen mandibular pheromone during this period, whereas control bees were not exposed to this pheromone. Isopentylacetate-induced learning impairments were apparent in young (less than one week old) controls, but not in bees of the same age exposed to queen mandibular pheromone. This study reveals young worker bees can exhibit a stress-like response to alarm pheromone, but isopentylacetate-induced learning impairments in young bees are suppressed by queen mandibular pheromone. While isopentylacetate exposure reduced responses during associative learning (acquisition), it did not affect one-hour memory retrieval.


Subject(s)
Bees/physiology , Pentanols/metabolism , Pheromones/metabolism , Animals , Behavior, Animal , Learning , Mandible/metabolism , Social Behavior
SELECTION OF CITATIONS
SEARCH DETAIL