Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(3)2022 Jan 25.
Article in English | MEDLINE | ID: mdl-35160862

ABSTRACT

The present study was conducted on the machinability of 396 alloy (containing approximately 11% Si) and B319.2 alloy mainly to emphasize the effects of Fe-intermetallics, i.e., α-Fe, ß-Fe, and sludge. The results demonstrate that the presence of sludge in the form of hard spots has a significant effect on cutting forces and tool life, in that it decreases drill life by 50% compared to the base alloy. The formation of the α-Fe phase in the M1 base alloy has a beneficial effect on tool life in that this alloy produces the highest number of holes drilled compared to alloys containing sludge or ß-Fe; this result may be explained by the fact that the formation of the α-Fe intermetallic, with its rounded Chinese script morphology and its presence within α-Al dendrites, is expected to improve matrix homogeneity via hardening of the soft α-Al dendrites. Increasing the Fe-content from 0.5% to 1% in the 396-T6 alloy containing 0.5% Mn produces a distinct improvement in alloy machinability in terms of cutting force and tool life. The addition of Fe and/or Mn appears to have no discernible effect on the build-up edge area (BUE) and chip shape.

2.
Materials (Basel) ; 9(6)2016 Jun 02.
Article in English | MEDLINE | ID: mdl-28773564

ABSTRACT

In the present work, in-situ metal matrix composites were fabricated through squeeze casting. The copper particles were dispersed with different weight percentages (3%, 6%, 10%, and 15%) into Al-12% Si piston alloy. Also, heat treatments were performed at 380 °C and 450 °C for holding times of 6 and 18 h. The microstructures, X-ray diffractometer (XRD) pattern, hardness, and wear characteristics were evaluated. The results showed that these copper particles have reacted with the aluminum under all of the aforementioned processing conditions resulting in the formation of fine copper aluminide intermetallics. Most of the intermetallics were CuAl2, while AlCu appeared in a small ratio. Additionally, these intermetallics were homogenously distributed within the alloy matrix with up to 6% Cu addition. The amounts of those intermetallics increased after performing heat treatment. Most of these intermetallics were CuAl2 at 380 °C, while the Cu-rich intermetallics appeared at 450 °C. Increasing the holding time to 18 h, however, led to grain coarsening and resulted in the formation of some cracks. The hardness of the resulting composite materials was improved. The hardness value reached to about 170 HV after heat treating at 380 °C for 8 h. The wear resistance of the resulting composite materials was remarkably improved, especially at lower additions of Cu and at the lower heat treatment temperature.

3.
Materials (Basel) ; 9(7)2016 Jun 23.
Article in English | MEDLINE | ID: mdl-28773629

ABSTRACT

Surface composite layers were successfully fabricated on an A 1050-H24 aluminum plate by dispersed iron (Fe) and magnetite (Fe3O4) particles through friction stir processing (FSP). Fe and Fe3O4 powders were packed into a groove of 3 mm in width and 1.5 mm in depth, cut on the aluminum plate, and covered with an aluminum sheet that was 2-mm thick. A friction stir processing (FSP) tool of square probe shape, rotated at a rate of 1000-2000 rpm, was plunged into the plate through the cover sheet and the groove, and moved along the groove at a travelling speed of 1.66 mm/s. Double and triple passes were applied. As a result, it is found that the Fe particles were homogenously distributed in the whole nugget zone at a rotation speed of 1000 rpm after triple FSP passes. Limited interfacial reactions occurred between the Fe particles and the aluminum matrix. On the other hand, the lower rotation speed (1000 rpm) was not enough to form a sound nugget when the dispersed particles were changed to the larger Fe3O4. The Fe3O4 particles were dispersed homogenously in a sound nugget zone when the rotation speed was increased to 1500 rpm. No reaction products could be detected between the Fe3O4 particles and the aluminum matrix. The saturation magnetization (Ms) of the Fe-dispersed nugget zone was higher than that of the Fe3O4-dispersed nugget zone. Moreover, there were good agreement between the obtained saturation magnetization values relative to that of pure Fe and Fe3O4 materials and the volume content of the dispersed particles in the nugget zone.

4.
Materials (Basel) ; 9(1)2016 Jan 13.
Article in English | MEDLINE | ID: mdl-28787844

ABSTRACT

The present study was performed on A356 alloy [Al-7 wt %Si 0.0.35 wt %Mg]. To that La and Ce were added individually or combined up to 1.5 wt % each. The results show that these rare earth elements affect only the alloy melting temperature with no marked change in the temperature of Al-Si eutectic precipitation. Additionally, rare earth metals have no modification effect up to 1.5 wt %. In addition, La and Ce tend to react with Sr leading to modification degradation. In order to achieve noticeable modification of eutectic Si particles, the concentration of rare earth metals should exceed 1.5 wt %, which simultaneously results in the precipitation of a fairly large volume fraction of insoluble intermetallics. The precipitation of these complex intermetallics is expected to have a negative effect on the alloy performance.

SELECTION OF CITATIONS
SEARCH DETAIL