Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
EMBO J ; 41(20): e110486, 2022 10 17.
Article in English | MEDLINE | ID: mdl-36004759

ABSTRACT

The proteasome is essential for cellular responses to various physiological stressors. However, how proteasome function impacts the stress resilience of regenerative damaged motor neurons remains unclear. Here, we develop a unique mouse model using a regulatory element of the activating transcription factor (Atf3) gene to label mitochondria in a damage-induced manner while simultaneously genetically disrupting the proteasome. Using this model, we observed that in injury-induced proteasome-deficient mouse motor neurons, the increase of mitochondrial influx from soma into axons is inhibited because neurons fail to disassemble ankyrin G, an organizer of the axon initial segment (AIS), in a proteasome-dependent manner. Further, these motor neurons exhibit amyotrophic lateral sclerosis (ALS)-like degeneration despite having regenerative potential. Selectively vulnerable motor neurons in SOD1G93A ALS mice, which induce ATF3 in response to pathological damage, also fail to disrupt the AIS, limiting the number of axonal mitochondria at a pre-symptomatic stage. Thus, damage-induced proteasome-sensitive AIS disassembly could be a critical post-translational response for damaged motor neurons to temporarily transit to an immature state and meet energy demands for axon regeneration or preservation.


Subject(s)
Amyotrophic Lateral Sclerosis , Axon Initial Segment , Amyotrophic Lateral Sclerosis/pathology , Animals , Ankyrins/metabolism , Axons/metabolism , Mice , Mice, Transgenic , Mitochondria/pathology , Motor Neurons/metabolism , Nerve Regeneration/physiology , Proteasome Endopeptidase Complex/metabolism , Superoxide Dismutase-1/genetics
2.
J Neuropathol Exp Neurol ; 80(7): 652-662, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34283221

ABSTRACT

Despite the routine use of sandwich enzyme-linked immunosorbent assays (ELISAs) for quantifying tau levels in CSF and plasma, tau accumulations in the brains of patients with Alzheimer disease (AD) have rarely been evaluated by this method. Thus, by introducing several tau ELISAs that target different epitopes, we evaluated accumulated tau levels in postmortem brains depending on disease stage, brain areas, and other AD-related changes. Notably, tau levels in insoluble fraction determined by each ELISAs differ depending on the epitopes of antibodies: non-AD control samples yield relatively high signals when an antibody against the N-terminal region of tau is used. On the other hand, ELISAs combining antibodies against the later-middle to C-terminal regions of tau produced substantially increased signals from AD samples, compared to those from non-AD controls. Such ELISAs better distinguish AD and non-AD controls, and the results are more closely associated with Braak neurofibrillary tangles stage, Aß accumulation, and glial markers. Moreover, these ELISAs can reflect the pattern of tau spread across brain regions. In conclusion, Tau ELISAs that combine antibodies against the later-middle to C-terminal regions of tau can better reflect neuropathological tau accumulation, which would enable to evaluate tau accumulation in the brain at a biochemical level.


Subject(s)
Alzheimer Disease/pathology , Brain/metabolism , tau Proteins/metabolism , Aged , Aged, 80 and over , Alzheimer Disease/metabolism , Brain/pathology , Enzyme-Linked Immunosorbent Assay , Female , Humans , Male , Middle Aged , Neurofibrillary Tangles/metabolism
3.
FASEB Bioadv ; 3(5): 323-333, 2021 May.
Article in English | MEDLINE | ID: mdl-33977233

ABSTRACT

Clinical studies have indicated that obesity and diabetes are associated with Alzheimer's disease (AD) and neurodegeneration. However, the mechanism by which obesity/diabetes and AD interact with each other and contribute to dementia remains elusive. To obtain insights into their interaction at molecular levels, we performed gene expression analysis of APP;ob/ob mice, which were generated by crossing transgenic AD model mice (APP23 mice) with ob/ob mice, which are obese and mildly diabetic. The Aß level in these mice was reduced compared with that in pure APP mice. However, we identified a cluster of genes (cluster 10) upregulated in APP;ob/ob mice but not in either APP or ob/ob mice. Interestingly, genes upregulated in the human AD brain were enriched in cluster 10. Moreover, genes in cluster 10 formed a network and shared upregulated genes with a cell model of neurodegeneration and other models of neurological disorders such as ischemia and epilepsy. In silico analyses showed that serum response factor (SRF), recently identified in a single-cell analysis of human brains as a transcription factor that can control the conversion from healthy cells to AD cells, might be a common transcriptional regulator for a subset of cluster 10 genes. These data suggest that upregulation of genes uniquely associated with APP;ob/ob mice is an evidence of the interaction between obesity/diabetes and AD.

4.
J Neuroinflammation ; 18(1): 86, 2021 Apr 03.
Article in English | MEDLINE | ID: mdl-33812385

ABSTRACT

BACKGROUND: Subcortical ischemic vascular dementia, one of the major subtypes of vascular dementia, is characterized by lacunar infarcts and white matter lesions caused by chronic cerebral hypoperfusion. In this study, we used a mouse model of bilateral common carotid artery stenosis (BCAS) to investigate the role of B-cell translocation gene 2 (BTG2), an antiproliferation gene, in the white matter glial response to chronic cerebral hypoperfusion. METHODS: Btg2-/- mice and littermate wild-type control mice underwent BCAS or sham operation. Behavior phenotypes were assessed by open-field test and Morris water maze test. Brain tissues were analyzed for the degree of white matter lesions and glial changes. To further confirm the effects of Btg2 deletion on proliferation of glial cells in vitro, BrdU incorporation was investigated in mixed glial cells derived from wild-type and Btg2-/- mice. RESULTS: Relative to wild-type mice with or without BCAS, BCAS-treated Btg2-/- mice exhibited elevated spontaneous locomotor activity and poorer spatial learning ability. Although the severities of white matter lesions did not significantly differ between wild-type and Btg2-/- mice after BCAS, the immunoreactivities of GFAP, a marker of astrocytes, and Mac2, a marker of activated microglia and macrophages, in the white matter of the optic tract were higher in BCAS-treated Btg2-/- mice than in BCAS-treated wild-type mice. The expression level of Gfap was also significantly elevated in BCAS-treated Btg2-/- mice. In vitro analysis showed that BrdU incorporation in mixed glial cells in response to inflammatory stimulation associated with cerebral hypoperfusion was higher in Btg2-/- mice than in wild-type mice. CONCLUSION: BTG2 negatively regulates glial cell proliferation in response to cerebral hypoperfusion, resulting in behavioral changes.


Subject(s)
Cerebrovascular Circulation/genetics , Gene Deletion , Immediate-Early Proteins/deficiency , Immediate-Early Proteins/genetics , Neuroglia/metabolism , Tumor Suppressor Proteins/deficiency , Tumor Suppressor Proteins/genetics , White Matter/metabolism , Animals , Mice , Mice, Inbred C57BL , Mice, Knockout , Neuroglia/pathology , White Matter/pathology
5.
J Am Soc Nephrol ; 32(3): 597-613, 2021 03.
Article in English | MEDLINE | ID: mdl-33510039

ABSTRACT

BACKGROUND: The ubiquitin-proteasome system (UPS) and the autophagy-lysosomal system (APLS) are major intracellular degradation procedures. The importance of the APLS in podocytes is established, but the role of the UPS is not well understood. METHODS: To investigate the role of the UPS in podocytes, mice were generated that had deletion of Rpt3 (Rpt3pdKO), which encodes an essential regulatory subunit required for construction of the 26S proteasome and its deubiquitinating function. RESULTS: Rpt3pdKO mice showed albuminuria and glomerulosclerosis, leading to CKD. Impairment of proteasome function caused accumulation of ubiquitinated proteins and of oxidative modified proteins, and it induced podocyte apoptosis. Although impairment of proteasome function normally induces autophagic activity, the number of autophagosomes was lower in podocytes of Rpt3pdKO mice than in control mice, suggesting the autophagic activity was suppressed in podocytes with impairment of proteasome function. In an in vitro study, antioxidant apocynin and autophagy activator rapamycin suppressed podocyte apoptosis induced by proteasome inhibition. Moreover, rapamycin ameliorated the glomerular injury in the Rpt3pdKO mice. The accumulation of ubiquitinated proteins and of oxidative modified proteins, which were detected in the podocytes of Rpt3pdKO mice, is a characteristic feature of aging. An aging marker was increased in the podocytes of Rpt3pdKO mice, suggesting that impairment of proteasome function promoted signs of aging in podocytes. CONCLUSIONS: Impairment of proteasome function in podocytes led to CKD, and antioxidants and autophagy activators can be therapeutic agents for age-dependent CKD.


Subject(s)
Podocytes/enzymology , Proteasome Endopeptidase Complex/deficiency , Renal Insufficiency, Chronic/enzymology , Renal Insufficiency, Chronic/etiology , Aging/metabolism , Aging/pathology , Animals , Apoptosis/drug effects , Autophagy , Bortezomib/pharmacology , Cells, Cultured , Glomerulosclerosis, Focal Segmental/enzymology , Glomerulosclerosis, Focal Segmental/etiology , Glomerulosclerosis, Focal Segmental/pathology , Lysosomes/metabolism , Mice , Mice, Inbred C57BL , Mice, Knockout , Oxidation-Reduction , Podocytes/drug effects , Podocytes/pathology , Proteasome Endopeptidase Complex/genetics , Proteasome Inhibitors/pharmacology , Protein Aggregates , Renal Insufficiency, Chronic/pathology , Sirolimus/pharmacology , Ubiquitination
6.
Front Cell Dev Biol ; 8: 859, 2020.
Article in English | MEDLINE | ID: mdl-32984340

ABSTRACT

The ubiquitin-proteasome system has the capacity to degrade polyubiquitinated proteins and plays an important role in many cellular processes. However, the role of Rpt3, a crucial proteasomal gene, has not been investigated in adult muscles in vivo. Herein, we generated skeletal-muscle-specific Rpt3 knockout mice, in which genetic inactivation of Rpt3 could be induced by doxycycline administration. The Rpt3-knockout mice showed a significant reduction by more than 90% in the expression of Rpt3 in adult muscles. Using this model, we found that proteasome dysfunction in adult muscles resulted in muscle wasting and a decrease in the myofiber size. Immunoblotting analysis showed that the amounts of ubiquitinated proteins were markedly higher in muscles of Rpt3-deficient mice than in those of the control mice. Analysis of the autophagy pathway in the Rpt3-deficient mice showed that the upregulation of LC3II, p62, Atg5, Atg7, and Beclin-1 in protein levels, which supposed to be compensatory proteolysis activation. Our results suggest that the proteasome inhibition in adult muscle severely deteriorates myofiber integrity and results in muscle atrophy.

7.
Alzheimers Dement (Amst) ; 12(1): e12006, 2020.
Article in English | MEDLINE | ID: mdl-32211501

ABSTRACT

INTRODUCTION: Although diabetes and apolipoprotein E (apoE) are both significant risk factors for dementia, including Alzheimer's disease, it remains to be clarified how they are related to each other in contributing to the risk of dementia. METHODS: By reviewing the National Alzheimer's Coordinating Center (NACC) clinical records, we investigated whether diabetes affects cognitive decline depending on APOE genotype and their potential relationships with neuropathology. RESULTS: A significant interaction between diabetes and APOE genotype exists, where diabetes affected cognitive decline in APOE3 carriers and APOE2 carriers, but not APOE4 carriers. Moreover, the presence of vascular pathology was increased by diabetes in APOE3 carriers, while APOE4 carriers nearly reached plateau levels irrespective of diabetes. DISCUSSION: Diabetes accelerates cognitive decline, in part, through accelerating vascular impairment in non-APOE ε4 carriers, but such effects are negligible in APOE4 carriers, who themselves are already vulnerable to vascular impairment.

8.
FASEB J ; 34(2): 2425-2435, 2020 02.
Article in English | MEDLINE | ID: mdl-31907998

ABSTRACT

Clinical studies have indicated that obesity and diabetes are associated with Alzheimer's disease (AD) and neurodegeneration. Although the mechanisms underlying these associations remain elusive, the bidirectional interactions between obesity/diabetes and Alzheimer's disease (AD) may be involved in them. Both obesity/diabetes and AD significantly reduce life expectancy. We generated AppNL-F/wt knock-in; ob/ob mice by crossing AppNL-F/wt knock-in mice and ob/ob mice to investigate whether amyloid-ß (Aß) affects the lifespan of ob/ob mice. AppNL-F/wt knock-in; ob/ob mice displayed the shortest lifespan compared to wild-type mice, AppNL-F/wt knock-in mice, and ob/ob mice. Notably, the Aß42 levels were increased at minimum levels before deposition in AppNL-F/wt knock-in mice and AppNL-F/wt knock-in; ob/ob mice at 18 months of age. No differences in the levels of several neuronal markers were observed between mice at this age. However, we observed increased levels of glial fibrillary acidic protein (GFAP), an astrocyte marker, in AppNL-F/wt knock-in; ob/ob mice, while the levels of several microglial markers, including CD11b, TREM2, and DAP12, were decreased in both ob/ob mice and AppNL-F/wt knock-in; ob/ob mice. The increase in GFAP levels was not observed in young AppNL-F/wt knock-in; ob/ob mice. Thus, the increased Aß42 levels may decrease the lifespan of ob/ob mice, which is associated with the dysregulation of microglia and astrocytes in an age-dependent manner. Based on these findings, the imbalance in these neuroinflammatory cells may provide a clue to the mechanisms by which the interaction between obesity/diabetes and early AD reduces life expectancy.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Astrocytes/metabolism , Longevity , Microglia/metabolism , Peptide Fragments/metabolism , Alzheimer Disease/genetics , Alzheimer Disease/pathology , Amyloid beta-Peptides/genetics , Animals , Astrocytes/pathology , Gene Knock-In Techniques , Mice , Mice, Knockout , Mice, Obese , Microglia/pathology , Peptide Fragments/genetics
9.
Stem Cell Reports ; 11(6): 1523-1538, 2018 12 11.
Article in English | MEDLINE | ID: mdl-30416048

ABSTRACT

Adult muscle stem cells (satellite cells) are required for adult skeletal muscle regeneration. A proper balance between quiescence, proliferation, and differentiation is essential for the maintenance of the satellite cell pool and their regenerative function. Although the ubiquitin-proteasome is required for most protein degradation in mammalian cells, how its dysfunction affects tissue stem cells remains unclear. Here, we investigated the function of the proteasome in satellite cells using mice lacking the crucial proteasomal component, Rpt3. Ablation of Rpt3 in satellite cells decreased proteasome activity. Proteasome dysfunction in Rpt3-deficient satellite cells impaired their ability to proliferate, survive and differentiate, resulting in defective muscle regeneration. We found that inactivation of proteasomal activity induced proliferation defects and apoptosis in satellite cells. Mechanistically, insufficient proteasomal activity upregulated the p53 pathway, which caused cell-cycle arrest. Our findings delineate a critical function of the proteasome system in maintaining satellite cells in adult muscle.


Subject(s)
Muscle, Skeletal/cytology , Proteasome Endopeptidase Complex/metabolism , Stem Cells/metabolism , Ubiquitin/metabolism , Animals , Apoptosis , Cell Proliferation , Cells, Cultured , Mice , Mice, Knockout , Phenotype , Regeneration , Satellite Cells, Skeletal Muscle/metabolism , Tumor Suppressor Protein p53/metabolism
10.
Mol Brain ; 11(1): 61, 2018 10 24.
Article in English | MEDLINE | ID: mdl-30355327

ABSTRACT

The deposition of Amyloid-beta peptides (Aß) is detected at an earlier stage in Alzheimer's disease (AD) pathology. Thus, the approach toward Aß metabolism is considered to play a critical role in the onset and progression of AD. Mounting evidence suggests that lifestyle-related diseases are closely associated with AD, and exercise is especially linked to the prevention and the delayed progression of AD. We previously showed that exercise is more effective than diet control against Aß pathology and cognitive deficit in AD mice fed a high-fat diet; however, the underlying molecular mechanisms remain poorly understood. On the other hand, a report suggested that exercise induced expression of fibronectin type III domain-containing protein 5 (FNDC5) in the hippocampus of mice through PGC1α pathway. Thus, in the current study, we investigated a possibility that FNDC5 interacts with amyloid precursor protein (APP) and affects Aß metabolism. As a result, for the first time ever, we found the interaction between FNDC5 and APP, and forced expression of FNDC5 significantly decreased levels of both Aß40 and Aß42 secreted in the media. Taken together, our results indicate that FNDC5 significantly affects ß-cleavage of APP via the interaction with APP, finally regulating Aß levels. A deeper understanding of the mechanisms by which the interaction between APP and FNDC5 may affect Aß production in an exercise-dependent manner would provide new preventive strategies against the development of AD.


Subject(s)
Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Fibronectin Type III Domain , Fibronectins/metabolism , Animals , Computer Simulation , Fibronectins/chemistry , HEK293 Cells , Humans , Mice , Models, Molecular , Protein Binding , Solubility
11.
Brain Nerve ; 68(7): 837-47, 2016 Jul.
Article in Japanese | MEDLINE | ID: mdl-27395468

ABSTRACT

Owing to recent advancements in imaging techniques and biomarker research, the natural history of Alzheimer's disease (AD) has become clear from the very first preclinical stage. According to the study, more than 20 years before the onset of AD, Aß starts to accumulate in the brain. This induces neurofibrillary tangle formation in the cerebral isocortex, leading to cognitive decline. If this process is suppressed, disease activity can be controlled. However, at this point, the best and most realistic way to deal with AD is to target the environmental factors that have been identified as risk factors by epidemiological studies.


Subject(s)
Dementia , Age Distribution , Animals , Biomarkers , Dementia/epidemiology , Dementia/etiology , Dementia/prevention & control , Early Medical Intervention , Exercise , Humans , Risk Factors
12.
PLoS One ; 10(9): e0131199, 2015.
Article in English | MEDLINE | ID: mdl-26414661

ABSTRACT

Obesity and type 2 diabetes are risk factors of Alzheimer's disease (AD). We reported that a high fat diet (HFD) promotes amyloid precursor protein (APP) cleavage by ß-site APP cleaving enzyme 1 (BACE1) without increasing BACE1 levels in APP transgenic mice. However, the detailed mechanism had remained unclear. Here we demonstrate that HFD promotes BACE1/Adaptor protein-2 (AP-2)/clathrin complex formation by increasing AP-2 levels in APP transgenic mice. In Swedish APP overexpressing Chinese hamster ovary (CHO) cells as well as in SH-SY5Y cells, overexpression of AP-2 promoted the formation of BACE1/AP-2/clathrin complex, increasing the level of the soluble form of APP ß (sAPPß). On the other hand, mutant D495R BACE1, which inhibits formation of this trimeric complex, was shown to decrease the level of sAPPß. Overexpression of AP-2 promoted the internalization of BACE1 from the cell surface, thus reducing the cell surface BACE1 level. As such, we concluded that HFD may induce the formation of the BACE1/AP-2/clathrin complex, which is followed by its transport of BACE1 from the cell surface to the intracellular compartments. These events might be associated with the enhancement of ß-site cleavage of APP in APP transgenic mice. Here we present evidence that HFD, by regulation of subcellular trafficking of BACE1, promotes APP cleavage.


Subject(s)
Adaptor Protein Complex 2/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Aspartic Acid Endopeptidases/metabolism , Dietary Fats/pharmacology , Proteolysis/drug effects , Adaptor Protein Complex 2/genetics , Alzheimer Disease/genetics , Alzheimer Disease/metabolism , Alzheimer Disease/pathology , Amino Acid Substitution , Amyloid Precursor Protein Secretases/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Aspartic Acid Endopeptidases/genetics , CHO Cells , Cricetinae , Cricetulus , Dietary Fats/adverse effects , Humans , Mice , Mice, Transgenic , Mutation, Missense , Obesity/genetics , Obesity/metabolism , Obesity/pathology , Protein Transport/drug effects , Protein Transport/genetics
13.
J Cell Sci ; 127(Pt 24): 5204-17, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25380823

ABSTRACT

The ubiquitin-proteasome and autophagy-lysosome pathways are the two major routes of protein and organelle clearance. The role of the proteasome pathway in mammalian muscle has not been examined in vivo. In this study, we report that the muscle-specific deletion of a crucial proteasomal gene, Rpt3 (also known as Psmc4), resulted in profound muscle growth defects and a decrease in force production in mice. Specifically, developing muscles in conditional Rpt3-knockout animals showed dysregulated proteasomal activity. The autophagy pathway was upregulated, but the process of autophagosome formation was impaired. A microscopic analysis revealed the accumulation of basophilic inclusions and disorganization of the sarcomeres in young adult mice. Our results suggest that appropriate proteasomal activity is important for muscle growth and for maintaining myofiber integrity in collaboration with autophagy pathways. The deletion of a component of the proteasome complex contributed to myofiber degeneration and weakness in muscle disorders that are characterized by the accumulation of abnormal inclusions.


Subject(s)
Muscle Development , Muscle, Skeletal/growth & development , Muscle, Skeletal/pathology , Proteasome Endopeptidase Complex/metabolism , Protein Aggregates , Animals , Autophagy/drug effects , Biomechanical Phenomena/drug effects , DNA-Binding Proteins/deficiency , DNA-Binding Proteins/metabolism , Dystrophin/metabolism , Immunohistochemistry , Mice, Knockout , Muscle Development/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/enzymology , Phenotype , Proteasome Inhibitors/pharmacology , Protein Aggregates/drug effects , Signal Transduction/drug effects , Transcription, Genetic/drug effects , Ubiquitin/metabolism
14.
J Biol Chem ; 287(51): 42984-94, 2012 Dec 14.
Article in English | MEDLINE | ID: mdl-23095749

ABSTRACT

Evidence suggests that protein misfolding is crucially involved in the pathogenesis of amyotrophic lateral sclerosis (ALS). However, controversy still exists regarding the involvement of proteasomes or autophagy in ALS due to previous conflicting results. Here, we show that impairment of the ubiquitin-proteasome system, but not the autophagy-lysosome system in motor neurons replicates ALS in mice. Conditional knock-out mice of the proteasome subunit Rpt3 in a motor neuron-specific manner (Rpt3-CKO) showed locomotor dysfunction accompanied by progressive motor neuron loss and gliosis. Moreover, diverse ALS-linked proteins, including TAR DNA-binding protein 43 kDa (TDP-43), fused in sarcoma (FUS), ubiquilin 2, and optineurin were mislocalized or accumulated in motor neurons, together with other typical ALS hallmarks such as basophilic inclusion bodies. On the other hand, motor neuron-specific knock-out of Atg7, a crucial component for the induction of autophagy (Atg7-CKO), only resulted in cytosolic accumulation of ubiquitin and p62, and no TDP-43 or FUS pathologies or motor dysfunction was observed. These results strongly suggest that proteasomes, but not autophagy, fundamentally govern the development of ALS in which TDP-43 and FUS proteinopathy may play a crucial role. Enhancement of proteasome activity may be a promising strategy for the treatment of ALS.


Subject(s)
Amyotrophic Lateral Sclerosis/enzymology , Amyotrophic Lateral Sclerosis/pathology , Autophagy , Motor Neurons/enzymology , Motor Neurons/pathology , Proteasome Endopeptidase Complex/metabolism , Animals , Behavior, Animal , Cell Cycle Proteins , DNA-Binding Proteins/metabolism , Eye Proteins/metabolism , Membrane Transport Proteins , Mice , Mice, Knockout , Neuroglia/metabolism , Neuroglia/pathology , Organ Specificity , Phenotype , Protein Subunits/metabolism , RNA-Binding Protein FUS/metabolism , Spinal Cord/pathology , Time Factors , Ubiquitin/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...