Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38230646

ABSTRACT

The pursuit of developing sensors, characterized by their fluorescence-intensity enhancement or "turn-on" behavior, for accurately detecting noxious small molecules, such as amines, at minimal levels remains a significant challenge. Metal-organic frameworks (MOFs) have emerged as promising candidates as sensors as a result of their diverse structural features and tunable properties. This study introduces the rational synthesis of a new highly coordinated (6,12)-connected rare earth (RE) alb-MOF-3, by combining the nonanuclear 12-connected hexagonal prismatic building units, [RE9(µ3-O)2(µ3-X)12(OH)2(H2O)7(O2C-)12], with the 6-connected rigid trigonal prismatic extended triptycene ligand. The resulting Y-alb-MOF-3 material is distinguished by its high microporosity and Brunauer-Emmett-Teller surface area of approximately 1282 m2/g, which offers notable hydrolytic stability. Remarkably, it demonstrates selective detection capabilities for primary aliphatic amines in aqueous media, as evidenced by fluorescence turn-on behavior and photoluminescence (PL) titration measurements. This work emphasizes the potential of MOFs as sensors in advancing their selectivity and sensitivity toward various analytes.

2.
Polymers (Basel) ; 14(18)2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36145890

ABSTRACT

The response to the high demand for decreasing the amount of CO2 in the atmosphere, a new polyaminal-based polymer network was designed and successfully prepared through one-pot polycondensation reaction of melamine and [2,2'-Bipyridine]-5,5'-dicarbaldehyde. The formation of the polymer structure was confirmed by FT-IR, solid-state 13C NMR, and powder-X-ray diffraction. The porous properties of the polymeric structure were confirmed by field-emission scanning electron microscope and N2 adsorption-desorption methods at 77 K. The prepared polymer can take up 1.02 mmol/g and 0.71 mmol/g CO2 at 273 K and 298 K, respectively, despite its relatively modest Brunauer-Emmett-Teller (BET) surface area (160.7 m2/g), due to the existence of superabundant polar groups on the pore surfaces.

3.
Environ Sci Pollut Res Int ; 29(52): 78472-78482, 2022 Nov.
Article in English | MEDLINE | ID: mdl-35697983

ABSTRACT

BiVO4 has been constructed into heterojunctions with TiO2 to boost the photocatalytic ability under visible illumination. Here, mesoporous BiVO4/TiO2 nanocomposites have been fabricated by a facile sol-gel approach utilizing nonionic surfactant and addressed for morphological, optical, structural, and degradation of ciprofloxacin (CIP) in water under visible illumination as an antibiotic pollutant model. The TEM images demonstrated that the TiO2 NPs are homogenous in terms of shape and size (15 ± 5 nm). The introduction of BiVO4 into mesoporous TiO2 could effectively enhance the rapid separation efficiency of the photoinduced carriers and optical absorption. The 3%BiVO4/TiO2 photocatalyst possessed the best degradation efficiency (100%) within 60 min which was promoted 20-folds larger than TiO2 NPs (5%). 3%BiVO4/TiO2 nanocomposite exhibited the fastest degradation rate (2.15 × 10-2 min-1), which was 40 times faster than bare TiO2 photocatalyst (0.05 × 10-2 min-1). The enhanced photocatalytic ability originated from superior charge separation characteristics and high solar energy absorption in mesopore structures. The recombination rate and mobility of charge carriers were characterized utilizing photoluminescence (PL) and photoelectrochemical measurements. This work highlights the advantages of mesoporous heterojunction BiVO4/TiO2 nanocomposites for photocatalytic performances and provides a multilateral route to design an effective wide-spectrum response photocatalyst for the development of comparable materials. The photocatalytic mechanism for degradation CIP over BiVO4/TiO2 was discussed in detail..


Subject(s)
Environmental Pollutants , Vanadates , Photolysis , Vanadates/chemistry , Bismuth/chemistry , Catalysis , Ciprofloxacin/chemistry , Anti-Bacterial Agents/chemistry , Water , Surface-Active Agents
4.
Environ Res ; 213: 113718, 2022 10.
Article in English | MEDLINE | ID: mdl-35750127

ABSTRACT

The supper dissemination of antibiotic waste in water resources has exponentially progressed the vital water and soil pollution that affect human health and the environment. Consequently, there have been several types of research anticipated for the green mineralization of such pollutants. Herein, we intended a surfactant-aided sol-gel formation of lanthanum-doped sodium tantalate (LNTO) nanocrystals. The synthesized 13 nm averaged-size perovskite LNTO nanocrystals were responsive to visible-light irradiation by incorporation of 4.4-5.2 nm oxide nanoparticles, namely Bi2O3, CdO, Fe2O3, and CuO at 4.0 wt% through coprecipitation. The formed nanomaterials unveiled mesostructured surface textures with specific surface areas of 199-229 m2 g-1. The obtained nanoceramics were employed for the mineralization of 10 ppm of ciprofloxacin antibiotic (CPF) as an emerging antibiotic waste in water under visible light irradiation. The CuO-incorporated LNTO exhibited the best photocatalytic oxidation of CPF after 120 min compared with other oxides with an excellent photoreaction rate of 0.0343 min-1 which is 49 times higher than the pure LNTO. The 2.0 gL-1 CuO/LNTO-dose achieved the full photooxidation of CPF at an oxidation speed of 0.0738 min -1 within just 1.0 h of visible light irradiation and magnificent regeneration ability. This enhanced activity of CuO/LNTO is regarded as significant light absorption and a bandgap energy reduction to 2.12 eV. Besides that, the heterojunction between CuO and LNTO amended the photogenerated carrier mobility and separation as concluded from the photoluminescence and photocurrent exploration. This comparative work suggests the proper design of low bandgap oxide decoration of solution-based perovskite oxide photocatalysts for promoting the visible-light mineralization of antibiotics in water.


Subject(s)
Ciprofloxacin , Nanoparticles , Anti-Bacterial Agents , Catalysis , Humans , Light , Nanoparticles/chemistry , Oxides/chemistry , Water/chemistry
5.
Bioorg Chem ; 127: 105964, 2022 10.
Article in English | MEDLINE | ID: mdl-35759881

ABSTRACT

Multitargeting kinase inhibitors recently proved to be a profitable approach for conquering cancer proliferation. The current study represents the design and synthesis of new thiophene, thienopyridine, and thiazoline-based derivatives 4-14a,b. All the target compounds were examined in vitro against three cancer cell lines; the liver (HepG-2), breast (MCF-7), and colon (HCT-116) where the thiophene-based compounds 5a-c, demonstrated the most potent activity. Furthermore, the latter derivatives revealed a safety profile against WI-38 normal cell line of selectivity indices ranging from 4.43 to 17.44. In vitro enzyme assay of 5a-c revealed that the carbohydrazide analog 5c has the most promising multitargeting inhibiting activity against Pim-1, VEGFR-2, and EGFRWT enzymes of IC50 values; 0.037 ± 0.02, 0.95 ± 0.24, and 0.16 ± 0.05 µM, respectively. As it was the most potent analog, 5c was further subjected to cell cycle and apoptosis analysis. The results indicated that it induced preG1 arrest and an apoptotic effect in the early and late stages. Moreover, further apoptosis studies were carried out for 5c to evaluate its proapoptotic potential. Interestingly, 5c enhanced the levels of Bax/Bcl-2 ratio, p53, and active caspase 3 by 18, 6.4, and 24 folds, respectively compared to the untreated cells. The antimicrobial evaluation showed that only compounds 3 and 5a produced broad-spectrum potency, while 5b and 5c exhibited outstanding antifungal effects. Finally, a molecular docking study was carried out to discover the probable interactions of compound 5c with the active sites of Pim-1, VEGFR-2, and EGFRWT kinases.


Subject(s)
Antineoplastic Agents , Vascular Endothelial Growth Factor Receptor-2 , Antineoplastic Agents/chemistry , Cell Line, Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , ErbB Receptors/metabolism , Molecular Docking Simulation , Molecular Structure , Protein Kinase Inhibitors , Structure-Activity Relationship , Thienopyridines/pharmacology , Thiophenes/chemistry
6.
Bioorg Chem ; 114: 105078, 2021 09.
Article in English | MEDLINE | ID: mdl-34161878

ABSTRACT

This study was focused on the synthesis of new pyrimidines 4a,b, 5a,b and pyrazoles 6a, b as ATP mimicking tyrosine kinase inhibitors of the epidermal growth factor receptor (EGFR). The new compounds were assessed as cytotoxic candidates against human breast cancer cells (MCF-7) and hepatocellular carcinoma cells (HepG-2). All the new compounds appeared as more potent cytotoxic agents than erlotinib, while only compound 4a exhibited more potency than 5-flourouracil and 4b analogue was equipotent to it. Accordingly, the kinase suppression effect of 4a and 4b was further evaluated against EGFRWT, EGFRL858R and EGFRT790M. Both pyrimidine analogues 4a and 4b displayed outstanding inhibitory activity against EGFRWT and its two mutated isoforms EGFRL858R and EGFRT790M in comparing to erlotinib and osimertinib as reference drugs. Additionally, all the new analogues were subjected to antimicrobial assay. Interestingly, both 4a and 4b represented the most promising activity of wide spectrum antimicrobial effect against the examined microbes in comparison to gentamycin and ketoconazole as standard drugs. Moreover, docking results proved the good binding interactions of the compounds 4a and 4b with EGFRWT and EGFRT790M which were in accordance with the results of the in vitro enzyme assay. Additional in silico ADMET studies were performed for the new derivatives which represented their good oral absorption, good drug-likeness properties and low toxicity risks in human.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Antineoplastic Agents/pharmacology , Protein Kinase Inhibitors/pharmacology , Pyrazoles/pharmacology , Pyrimidines/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Aspergillus fumigatus/drug effects , Cell Line, Tumor , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Humans , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Mucorales/drug effects , Protein Kinase Inhibitors/chemical synthesis , Protein Kinase Inhibitors/chemistry , Proteus vulgaris/drug effects , Pyrazoles/chemical synthesis , Pyrazoles/chemistry , Pyrimidines/chemical synthesis , Pyrimidines/chemistry , Streptococcus/drug effects , Structure-Activity Relationship
7.
RSC Adv ; 12(1): 561-577, 2021 Dec 20.
Article in English | MEDLINE | ID: mdl-35424523

ABSTRACT

Deregulation of various protein kinases is considered as one of the important factors resulting in cancer development and metastasis, thus multi-targeting the kinase family is one of the most important strategies in current cancer therapy. This context represents the design and synthesis of two sets of derivatives bearing a pyrazoline-3-one ring conjugated either with a thieno[3,2-d]thiazole or with a dihydrothiazolo[4,5-d]thiazole scaffold via an NH linker, 3a-d and 5a-d respectively, using the pyrazolinone-thiazolinone derivative 1 as a key precursor. All the newly synthesized compounds were assessed in vitro for their anticancer activity against two cancer cell lines (MCF-7 and HepG-2). The safety profile of the most active cytotoxic candidates 1 and 3c was further examined against the normal cell line WI-38. The compounds 1 and 3c were further evaluated as multi-targeting kinase inhibitors against EGFR, VEGFR-2 and BRAFV600E, exhibiting promising suppression impact. Additionally, the latter compounds were investigated for their impact on cell cycle and apoptosis induction potential in the MCF-7 cell line. Moreover, the antimicrobial activity of all the new analogues was evaluated against a panel of Gram-positive and Gram-negative bacteria, yeast and fungi in comparison to streptomycin and amphotericin-B as reference drugs. Interestingly, both 1 and 3c showed the most promising microbial inhibitory effect. Molecular docking studies showed promising binding patterns of the compounds 1 and 3c with the prospective targets, EGFR, VEGFR-2 and BRAFV600E. Finally, additional toxicity studies were performed for the new derivatives which showed their good drug-like properties and low toxicity risks in humans.

8.
Des Monomers Polym ; 22(1): 8-53, 2019.
Article in English | MEDLINE | ID: mdl-30833877

ABSTRACT

New synergic behavior is always inspiring scientists toward the formation of nanocomposites aiming at getting advanced materials with superior performance and/or novel properties. Carbon nanotubes (CNT), graphene, fullerene, and graphite as carbon-based are great fillers for polymeric materials. The presence of these materials in the polymeric matrix would render it several characteristics, such as electrical and thermal conductivity, magnetic, mechanical, and as sensor materials for pressure and other environmental changes. This review presents the most recent works in the use of CNT, graphene, fullerene, and graphite as filler in different polymeric matrixes. The primary emphasis of this review is on CNT preparation and its composites formation, while others carbon-based nano-fillers are also introduced. The methods of making polymer nanocomposites using these fillers and their impact on the properties obtained are also presented and discussed.

9.
Angew Chem Int Ed Engl ; 58(10): 3167-3172, 2019 Mar 04.
Article in English | MEDLINE | ID: mdl-30225855

ABSTRACT

The addition of 2,6-dimethylphenyl isocyanide and t-butyl isocyanide to tetramesityldisilene was examined. In both cases, the initially formed product is an iminodisilirane; however, the iminodisiliranes are unstable under the reaction conditions and react with a second equivalent of the isocyanide to give either a 3-silaazetidine or a novel bicyclic double enamine, respectively. Taken together with the previous examples in the literature, the results demonstrate that subtle differences in the steric bulk of the disilene or the electronic effects of the isocyanide can lead to dramatic differences in the reaction pathway.

10.
Nanobiomedicine (Rij) ; 5: 1849543518794818, 2018.
Article in English | MEDLINE | ID: mdl-30159049

ABSTRACT

A new class of biologically active polymer nanocomposites based on polyvinyl alcohol and reinforced mixed graphene/carbon nanotube as carbon-based nanofillers with a general abbreviation (polyvinyl alcohol/mixed graphene-carbon nanotubes) has been successfully synthesized by an efficient solution mixing method with the help of ultrasonic radiation. Mixed graphene and carbon nanotubes ratio has been prepared (50%:50%) wt by wt. Different loading of mixed graphene-carbon nanotubes (2, 5, 10, 15, and 20 wt%) were added to the host polyvinyl alcohol polymer. In this study, polyvinyl alcohol/mixed graphene-carbon nanotubesa-e nanocomposites were characterized and analyzed by X-ray diffraction, Fourier transform infrared, scanning electron microscopy, transmission electron microscopy, and the thermal stability was measured by thermogravimetric analysis and derivative thermal gravimetric. Fourier transform infrared and X-ray diffraction spectra proved the addition of mixed graphene-carbon nanotubes into polyvinyl alcohol matrix. X-ray diffraction patterns for these nanocomposites showed 2θ = 19.35° and 40° due to the crystal nature of polyvinyl alcohol in addition to 2θ = 26.5° which attributed to the graphite plane of carbon-based nanofillers. Thermal stability of polyvinyl alcohol/mixed graphene-carbon nanotubes nanocomposites was enhanced comparing with pure polyvinyl alcohol. The main degradation step ranged between 360° and 450°C. Moreover, maximum composite degradation temperature has appeared at range from 285°C to 267°C and final composite degradation temperature (FCDT) displayed at a temperature range of 469-491°C. Antibacterial property of polyvinyl alcohol/mixed graphene-carbon nanotubesa-e nanocomposites were tested against Escherichia coli bacteria using the colony forming units technique. Results showed an improvement of antibacterial property. The rate percentages of polyvinyl alcohol/mixed graphene-carbon nanotubesb, polyvinyl alcohol/mixed graphene-carbon nanotubesc, and polyvinyl alcohol/mixed graphene-carbon nanotubesd nanocomposites after 24 h are 6%, 5%, and 7% respectively. However, polyvinyl alcohol/mixed graphene-carbon nanotubese nanocomposite showed hyperactivity, where its reduction percentage remarkably raised up to 100% which is the highest inhibition rate percentage. In addition, polyvinyl alcohol and polyvinyl alcohol/graphene-carbon nanotubesa-d showed colony forming units values/ml 70 × 106 and 65 ± 2 × 106 after 12 h. After 24 h, the colony forming units values/ml were in the range of 86 × 106-95 × 106.

11.
Dalton Trans ; 46(44): 15451-15457, 2017 Nov 14.
Article in English | MEDLINE | ID: mdl-29083430

ABSTRACT

The addition of a variety of sulfones and a sulfoxide to ditetrelenes (a disilene and a digermene) was examined. The reaction of benzenesulfonyl chloride with tetramesityldisilene or tetramesityldigermene results in the formation of the 1,2-addition products, 2-chlorotetramesityldisilyl- or digermylbenzenesulfinate. The addition of p-toluenesulfonyl chloride to the disilene gave the analogous product, 2-chlorotetramesityldisilyl p-toluenesulfinate. In contrast, benzenesulfonyl fluoride, diphenyl and dimethyl sulfone did not react with either the disilene or the digermene. The unprecedented formation of the sulfinates reveals a selective 2-electron reduction of the sulfur centres using ditetrelenes. The addition reactions of sulfonyl compounds illustrates the potential of ditetrelenes to serve as reducing agents which react rapidly, at room temperature under mild conditions. The reaction of tetramesityldisilene with diphenyl sulfoxide resulted in the formation of tetramesityloxadisilirane and with benzene sulfonic acid resulted in the formation of 1,1,2,2-tetramesityldisilyl benzenesulfonate.

12.
Chemistry ; 22(39): 14006-14012, 2016 Sep 19.
Article in English | MEDLINE | ID: mdl-27529452

ABSTRACT

The reaction of benzyl isocyanide, tert-butyl isocyanide, and 2,6-dimethylphenyl isocyanide with tetramesityldigermene (Mes2 Ge=GeMes2 ) was examined. Whereas the addition of benzyl isocyanide gave the C-NC activation product, Mes2 Ge(CH2 Ph)Ge(CN)Mes2 , tert-butyl isocyanide, and 2,6-dimethylphenyl isocyanide did not give stable adducts, rather the rate of conversion of the digermene to the corresponding cyclotrigermane was accelerated. A comparison between the reactivity of the isocyanides with Mes2 Ge=GeMes2 and the Ge(100)-2×1 surface was made and some insights into the surface chemistry are offered.

13.
Dalton Trans ; 45(17): 7226-30, 2016 04 25.
Article in English | MEDLINE | ID: mdl-27064526

ABSTRACT

The addition of an alkynyl cyclopropyl mechanistic probe to a digermyne did not lead to any ring-opened rearrangement products indicating that the reaction pathway does not involve any vinylic radicals or cations and providing experimental insight into the addition of alkynes to digermynes.

14.
Angew Chem Int Ed Engl ; 54(5): 1612-5, 2015 Jan 26.
Article in English | MEDLINE | ID: mdl-25488588

ABSTRACT

The addition of nitromethane to tetramesityldisilene and tetramesityldigermene leads to the formation of the novel 1,3,2,4,5-dioxazadisil- and digermolidine ring systems, respectively. The 1,3,2,4,5-dioxazadisilolidine isomerizes to the 1,4,2,3,5-dioxazadisilolidine ring system, whereas the 1,3,2,4,5-dioxazadigermolidine undergoes ring opening to the isomeric oxime. The preferential formation of the 1,3,2,4,5-dioxazadisilolidine, and its rearrangement to a 1,4,2,3,5-dioxazadisilolidine, provides support for the suggested reaction pathway between nitromethane and the Si(100) 2×1 reconstructed surface.

SELECTION OF CITATIONS
SEARCH DETAIL
...