Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 26(5): 106690, 2023 May 19.
Article in English | MEDLINE | ID: mdl-37182106

ABSTRACT

Anopheles mosquitoes, as vectors for the malaria parasite, are a global threat to human health. To find and bite a human, they utilize neurons within their sensory appendages. However, the identity and quantification of sensory appendage neurons are lacking. Here we use a neurogenetic approach to label all neurons in Anopheles coluzzii mosquitoes. We utilize the homology assisted CRISPR knock-in (HACK) approach to generate a T2A-QF2w knock-in of the synaptic gene bruchpilot. We use a membrane-targeted GFP reporter to visualize the neurons in the brain and to quantify neurons in all major chemosensory appendages (antenna, maxillary palp, labella, tarsi, and ovipositor). By comparing labeling of brp>GFP and Orco>GFP mosquitoes, we predict the extent of neurons expressing ionotropic receptors (IRs) or other chemosensory receptors. This work introduces a valuable genetic tool for the functional analysis of Anopheles mosquito neurobiology and initiates characterization of the sensory neurons that guide mosquito behavior.

2.
Methods Mol Biol ; 2540: 35-78, 2022.
Article in English | MEDLINE | ID: mdl-35980572

ABSTRACT

Binary expression systems are useful genetic tools for experimentally labeling or manipulating the function of defined cells. The Q-system is a repressible binary expression system that consists of a transcription factor QF (and the recently improved QF2/QF2w), the inhibitor QS, a QUAS-geneX effector, and a drug that inhibits QS (quinic acid). The Q-system can be used alone or in combination with other binary expression systems, such as GAL4/UAS and LexA/LexAop. In this review chapter, we discuss the past, present, and future of the Q-system for applications in Drosophila and other organisms. We discuss the in vivo application of the Q-system for transgenic labeling, the modular nature of QF that allows chimeric or split transcriptional activators to be developed, its temporal control by quinic acid, new methods to generate QF2 reagents, intersectional expression labeling, and its recent adoption into many emerging experimental species.


Subject(s)
Drosophila Proteins , Quinic Acid , Animals , Animals, Genetically Modified , Drosophila/genetics , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Quinic Acid/pharmacology , Transcription Factors/genetics , Transcription Factors/metabolism , Transgenes
3.
Elife ; 112022 04 20.
Article in English | MEDLINE | ID: mdl-35442190

ABSTRACT

Drosophila melanogaster olfactory neurons have long been thought to express only one chemosensory receptor gene family. There are two main olfactory receptor gene families in Drosophila, the odorant receptors (ORs) and the ionotropic receptors (IRs). The dozens of odorant-binding receptors in each family require at least one co-receptor gene in order to function: Orco for ORs, and Ir25a, Ir8a, and Ir76b for IRs. Using a new genetic knock-in strategy, we targeted the four co-receptors representing the main chemosensory families in D. melanogaster (Orco, Ir8a, Ir76b, Ir25a). Co-receptor knock-in expression patterns were verified as accurate representations of endogenous expression. We find extensive overlap in expression among the different co-receptors. As defined by innervation into antennal lobe glomeruli, Ir25a is broadly expressed in 88% of all olfactory sensory neuron classes and is co-expressed in 82% of Orco+ neuron classes, including all neuron classes in the maxillary palp. Orco, Ir8a, and Ir76b expression patterns are also more expansive than previously assumed. Single sensillum recordings from Orco-expressing Ir25a mutant antennal and palpal neurons identify changes in olfactory responses. We also find co-expression of Orco and Ir25a in Drosophila sechellia and Anopheles coluzzii olfactory neurons. These results suggest that co-expression of chemosensory receptors is common in insect olfactory neurons. Together, our data present the first comprehensive map of chemosensory co-receptor expression and reveal their unexpected widespread co-expression in the fly olfactory system.


Subject(s)
Olfactory Receptor Neurons , Receptors, Odorant , Animals , Chemoreceptor Cells/metabolism , Drosophila melanogaster/physiology , Olfactory Receptor Neurons/physiology , Receptors, Odorant/genetics , Receptors, Odorant/metabolism , Smell
4.
MicroPubl Biol ; 20212021 May 14.
Article in English | MEDLINE | ID: mdl-34007957

ABSTRACT

Drosophila melanogaster vinegar flies have two olfactory organs: the antenna and maxillary palp. Olfactory neurons in these tissues respond to odorants via odorant receptors. Insect odorant receptors are heterotetramers of two proteins: an odorant binding OrX subunit and an Odorant Receptor Co-Receptor (Orco). Mutation of Orco disrupts odorant receptor formation, and abolishes olfactory responses. Some antennal olfactory neurons in Orco mutants have been previously shown to degenerate. Here, we examine if maxillary palp olfactory neurons also degenerate in Orco mutants. We find degeneration occurs both more broadly and more rapidly in Orco mutant maxillary palp olfactory neurons than reported for antennae, with ~60% of all mutant olfactory neurons absent in maxillary palps by 7 days post eclosion. Interestingly, the subset of Orco mutant olfactory neurons that express the Or42a receptor appear resistant to degeneration. These results suggest the maxillary palp might be a suitable model for examining the molecular mechanisms underlying neurodegeneration in sensory neurons.

5.
Chem Senses ; 462021 01 01.
Article in English | MEDLINE | ID: mdl-33885760

ABSTRACT

As vectors of disease, mosquitoes are a global threat to human health. The Anopheles mosquito is the deadliest mosquito species as the insect vector of the malaria-causing parasite, which kills hundreds of thousands every year. These mosquitoes are reliant on their sense of smell (olfaction) to guide most of their behaviors, and a better understanding of Anopheles olfaction identifies opportunities for reducing the spread of malaria. This review takes a detailed look at Anopheles olfaction. We explore a range of topics from chemosensory receptors, olfactory neurons, and sensory appendages to behaviors guided by olfaction (including host-seeking, foraging, oviposition, and mating), to vector management strategies that target mosquito olfaction. We identify many research areas that remain to be addressed.


Subject(s)
Anopheles/physiology , Behavior, Animal/physiology , Smell/physiology , Animals , Olfactory Receptor Neurons/metabolism , Receptors, Odorant/metabolism
6.
Cell Rep ; 23(2): 652-665, 2018 Apr 10.
Article in English | MEDLINE | ID: mdl-29642019

ABSTRACT

The neuromodulator dopamine (DA) plays a key role in motor control, motivated behaviors, and higher-order cognitive processes. Dissecting how these DA neural networks tune the activity of local neural circuits to regulate behavior requires tools for manipulating small groups of DA neurons. To address this need, we assembled a genetic toolkit that allows for an exquisite level of control over the DA neural network in Drosophila. To further refine targeting of specific DA neurons, we also created reagents that allow for the conversion of any existing GAL4 line into Split GAL4 or GAL80 lines. We demonstrated how this toolkit can be used with recently developed computational methods to rapidly generate additional reagents for manipulating small subsets or individual DA neurons. Finally, we used the toolkit to reveal a dynamic interaction between a small subset of DA neurons and rearing conditions in a social space behavioral assay.


Subject(s)
Dopamine/metabolism , Drosophila Proteins/genetics , Drosophila/metabolism , Animals , Animals, Genetically Modified/metabolism , Dopaminergic Neurons/metabolism , Drosophila Proteins/metabolism , Genetic Techniques , MicroRNAs/genetics , MicroRNAs/metabolism , Repressor Proteins/genetics , Repressor Proteins/metabolism , Transcription Factors/genetics , Transcription Factors/metabolism , Transcriptome
7.
Nat Commun ; 7: 13010, 2016 10 03.
Article in English | MEDLINE | ID: mdl-27694947

ABSTRACT

Mosquitoes are vectors for multiple infectious human diseases and use a variety of sensory cues (olfactory, temperature, humidity and visual) to locate a human host. A comprehensive understanding of the circuitry underlying sensory signalling in the mosquito brain is lacking. Here we used the Q-system of binary gene expression to develop transgenic lines of Anopheles gambiae in which olfactory receptor neurons expressing the odorant receptor co-receptor (Orco) gene are labelled with GFP. These neurons project from the antennae and maxillary palps to the antennal lobe (AL) and from the labella on the proboscis to the suboesophageal zone (SEZ), suggesting integration of olfactory and gustatory signals occurs in this brain region. We present detailed anatomical maps of olfactory innervations in the AL and the SEZ, identifying glomeruli that may respond to human body odours or carbon dioxide. Our results pave the way for anatomical and functional neurogenetic studies of sensory processing in mosquitoes.


Subject(s)
Anopheles/genetics , Anopheles/metabolism , Brain/metabolism , Smell , Animals , Animals, Genetically Modified , Female , Gene Expression Profiling , Gene Expression Regulation , Green Fluorescent Proteins/metabolism , Malaria/transmission , Male , Mosquito Vectors , Neurons/metabolism , Olfactory Pathways/physiology , Olfactory Receptor Neurons/metabolism , Receptors, Odorant/metabolism , Smell/physiology , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL