Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Proteomics ; 295: 105086, 2024 03 20.
Article in English | MEDLINE | ID: mdl-38266913

ABSTRACT

The Australian elapid snake radiation (Hydrophiinae) has evolved in the absence of competition from other advanced snakes. This has resulted in ecological specialisation in Australian elapids and the potential for venom proteomes divergent to other elapids. We characterised the venom of the Australian elapid Vermicella annulata (eastern bandy bandy). The venom was analysed using a two-dimensional fractionation process consisting of reverse-phase high-performance liquid chromatography then sodium dodecyl sulphate polyacrylamide gel electrophoresis, followed by bottom-up proteomics. Resulting peptides were matched to a species-specific transcriptome and 87% of the venom was characterised. We identified 11 toxins in the venom from six families: snake venom metalloproteinases (SVMP; 24.2%; two toxins) that are class P-III SVMPs containing a disintegrin-like domain, three-finger toxins (3FTx; 21.6%; five toxins), kunitz peptides (KUN; 19.5%; one toxin), cysteine-rich secretory proteins (CRiSP; 18%; one toxin), and phospholipase A2 (PLA2; 4%; two toxins). The venom had low toxin diversity with five protein families having one or two toxins, except for 3FTx with five different toxins. V. annulata expresses an unusual venom proteome, with high abundances of CRiSP, KUN and SVMP, which are not normally highly expressed in elapid venoms. This unusual venom composition could be an adaptation to its specialised diet. BIOLOGICAL SIGNIFICANCE: Although the Australian elapid radiation represents the most extensive speciation event of elapids on any continent, with 100 terrestrial species, the venom composition of these snakes has rarely been investigated, with only five species currently characterised. Here we provide the venom proteome of a sixth species, Vermicella annulata. The venom of this species could be particularly informative from an evolutionary perspective, as it is an extreme dietary specialist, only preying on blind snakes (Typhlopidae). We show that V. annulata expresses a highly unusual venom for an elapid, due to the high abundance of the protein families SVMP, CRiSP, and KUN, which together make up 61% of the venom. When averaged across all species, a typical elapid venom is 82% PLA2 and 3FTx. This is the second recorded instance of an Australian elapid having evolved highly divergent venom expression.


Subject(s)
Proteome , Toxins, Biological , Animals , Proteome/metabolism , Australia , Elapidae/metabolism , Elapid Venoms/chemistry , Peptides
2.
Arch Toxicol ; 97(1): 133-153, 2023 01.
Article in English | MEDLINE | ID: mdl-36437303

ABSTRACT

Snake venoms are heterogeneous mixtures of proteins and peptides used for prey subjugation. With modern proteomics there has been a rapid expansion in our knowledge of snake venom composition, resulting in the venom proteomes of 30% of vipers and 17% of elapids being characterised. From the reasonably complete proteomic coverage of front-fanged snake venom composition (179 species-68 species of elapids and 111 species of vipers), the venoms of vipers and elapids contained 42 different protein families, although 18 were only reported in < 5% of snake species. Based on the mean abundance and occurrence of the 42 protein families, they can be classified into 4 dominant, 6 secondary, 14 minor, and 18 rare protein families. The dominant, secondary and minor categories account for 96% on average of a snake's venom composition. The four dominant protein families are: phospholipase A2 (PLA2), snake venom metalloprotease (SVMP), three-finger toxins (3FTx), and snake venom serine protease (SVSP). The six secondary protein families are: L-amino acid oxidase (LAAO), cysteine-rich secretory protein (CRiSP), C-type lectins (CTL), disintegrins (DIS), kunitz peptides (KUN), and natriuretic peptides (NP). Venom variation occurs at all taxonomic levels, including within populations. The reasons for venom variation are complex, as variation is not always associated with geographical variation in diet. The four dominant protein families appear to be the most important toxin families in human envenomation, being responsible for coagulopathy, neurotoxicity, myotoxicity and cytotoxicity. Proteomic techniques can be used to investigate the toxicological profile of a snake venom and hence identify key protein families for antivenom immunorecognition.


Subject(s)
Proteomics , Toxins, Biological , Humans , Proteomics/methods , Snake Venoms , Antivenins , Proteome , Peptides
3.
Toxins (Basel) ; 14(5)2022 04 28.
Article in English | MEDLINE | ID: mdl-35622563

ABSTRACT

The Australasian region is home to the most diverse elapid snake radiation on the planet (Hydrophiinae). Many of these snakes have evolved into unique ecomorphs compared to elapids on other continents; however, their venom compositions are poorly known. The Australian elapid Hoplocephalus stephensii (Stephen's banded snake) is an arboreal snake with a unique morphology. Human envenoming results in venom-induced consumption coagulopathy, without neurotoxicity. Using transcriptomics and a multi-step fractionation method involving reverse-phase high-performance liquid chromatography, sodium dodecyl sulfate polyacrylamide gel electrophoresis and bottom-up proteomics, we characterized the venom proteome of H. stephensii. 92% of the total protein component of the venom by weight was characterized, and included all dominant protein families and 4 secondary protein families. Eighteen toxins made up 76% of the venom, four previously characterized and 14 new toxins. The four dominant protein families made up 77% of the venom, including snake venom metalloprotease (SVMP; 36.7%; three identified toxins), phospholipase A2 (PLA2; 24.0%; five identified toxins), three-finger toxin (3FTx; 10.2%; two toxins) and snake venom serine protease (SVSP; 5.9%; one toxin; Hopsarin). Secondary protein families included L-amino acid oxidase (LAAO; 10.8%; one toxin), natriuretic peptide (NP; 0.8%; two toxins), cysteine-rich secretory protein (CRiSP; 1.7%; two toxins), c-type lectin (CTL; 1.1%; one toxin), and one minor protein family, nerve growth factor (NGF; 0.8%; one toxin). The venom composition of H. stephensii differs to other elapids, with a large proportion of SVMP and LAAO, and a relatively small amount of 3FTx. H. stephensii venom appeared to have less toxin diversity than other elapids, with only 18 toxins making up three-quarters of the venom.


Subject(s)
Elapidae , Toxins, Biological , Animals , Australia , Elapidae/metabolism , Humans , Metalloproteases/metabolism , Proteome/analysis , Snake Venoms/chemistry , Toxins, Biological/metabolism
4.
Front Pharmacol ; 13: 816795, 2022.
Article in English | MEDLINE | ID: mdl-35387331

ABSTRACT

Background: Sea snakes are venomous snakes found in the warm parts of the Indo-Pacific, including around Australia. Most sea snake envenoming causes myotoxicity, but previous Australian case reports describe neurotoxicity. We aimed to describe the epidemiology and clinical presentation of Australian sea snake envenoming and the effectiveness of antivenom. Methods: Patients were recruited to the Australian Snakebite Project (ASP), an Australia-wide prospective observational study recruiting all patients with suspected or confirmed snakebite >2 years. Information about demographics, bite circumstances, species involved, clinical and laboratory features of envenoming, and treatment is collected and entered into a purpose-built database. Results: Between January 2002 and August 2020, 13 patients with suspected sea snake bite were recruited to ASP, 11 were male; median age was 30 years. Bites occurred in Queensland and Western Australia. All patients were in or around, coastal waters at the time of bite. The species involved was identified in two cases (both Hydrophis zweifeli). Local effects occurred in 9 patients: pain (5), swelling (5), bleeding (2), bruising (1). Envenoming occurred in eight patients and was characterised by non-specific systemic features (6) and myotoxicity (2). Myotoxicity was severe (peak CK 28200 and 48100 U/L) and rapid in onset (time to peak CK 13.5 and 15.1 h) in these two patients. Non-specific systemic features included nausea (6), headache (6), abdominal pain (3), and diaphoresis (2). Leukocytosis, neutrophilia, and lymphopenia occurred in both patients with myotoxicity and was evident on the first blood test. No patients developed neurotoxicity or coagulopathy. Early Seqirus antivenom therapy was associated with a lower peak creatine kinase. Conclusion: While relatively rare, sea snake envenoming is associated with significant morbidity and risk of mortality. Early antivenom appears to have a role in preventing severe myotoxicity and should be a goal of therapy.

6.
Front Pharmacol ; 12: 768015, 2021.
Article in English | MEDLINE | ID: mdl-35095489

ABSTRACT

Understanding snake venom proteomes is becoming increasingly important to understand snake venom biology, evolution and especially clinical effects of venoms and approaches to antivenom development. To explore the current state of snake venom proteomics and transcriptomics we investigated venom proteomic methods, associations between methodological and biological variability and the diversity and abundance of protein families. We reviewed available studies on snake venom proteomes from September 2017 to April 2021. This included 81 studies characterising venom proteomes of 79 snake species, providing data on relative toxin abundance for 70 species and toxin diversity (number of different toxins) for 37 species. Methodologies utilised in these studies were summarised and compared. Several comparative studies showed that preliminary decomplexation of crude venom by chromatography leads to increased protein identification, as does the use of transcriptomics. Combining different methodological strategies in venomic approaches appears to maximize proteome coverage. 48% of studies used the RP-HPLC →1D SDS-PAGE →in-gel trypsin digestion → ESI -LC-MS/MS pathway. Protein quantification by MS1-based spectral intensity was used twice as commonly as MS2-based spectral counting (33-15 studies). Total toxin diversity was 25-225 toxins/species, with a median of 48. The relative mean abundance of the four dominant protein families was for elapids; 3FTx-52%, PLA2-27%, SVMP-2.8%, and SVSP-0.1%, and for vipers: 3FTx-0.5%, PLA2-24%, SVMP-27%, and SVSP-12%. Viper venoms were compositionally more complex than elapid venoms in terms of number of protein families making up most of the venom, in contrast, elapid venoms were made up of fewer, but more toxin diverse, protein families. No relationship was observed between relative toxin diversity and abundance. For equivalent comparisons to be made between studies, there is a need to clarify the differences between methodological approaches and for acceptance of a standardised protein classification, nomenclature and reporting procedure. Correctly measuring and comparing toxin diversity and abundance is essential for understanding biological, clinical and evolutionary implications of snake venom composition.

8.
Toxins (Basel) ; 12(11)2020 10 31.
Article in English | MEDLINE | ID: mdl-33142783

ABSTRACT

Coastal taipan (Oxyuranus scutellatus) envenoming causes life-threatening neuromuscular paralysis in humans. We studied the time period during which antivenom remains effective in preventing and arresting in vitro neuromuscular block caused by taipan venom and taipoxin. Venom showed predominant pre-synaptic neurotoxicity at 3 µg/mL and post-synaptic neurotoxicity at 10 µg/mL. Pre-synaptic neurotoxicity was prevented by addition of Australian polyvalent antivenom before the venom and taipoxin and, reversed when antivenom was added 5 min after venom and taipoxin. Antivenom only partially reversed the neurotoxicity when added 15 min after venom and had no significant effect when added 30 min after venom. In contrast, post-synaptic activity was fully reversed when antivenom was added 30 min after venom. The effect of antivenom on pre-synaptic neuromuscular block was reproduced by washing the bath at similar time intervals for 3 µg/mL, but not for 10 µg/mL. We found an approximate 10-15 min time window in which antivenom can prevent pre-synaptic neuromuscular block. This time window is likely to be longer in envenomed patients due to the delay in venom absorption. Similar effectiveness of antivenom and washing with 3 µg/mL venom suggests that antivenom most likely acts by neutralizing pre-synaptic toxins before they interfere with neurotransmission inside the motor nerve terminals.


Subject(s)
Antivenins/pharmacology , Elapid Venoms/antagonists & inhibitors , Elapidae , Muscle Contraction/drug effects , Neuromuscular Blocking Agents/antagonists & inhibitors , Neuromuscular Junction/drug effects , Snake Bites/drug therapy , Animals , Chickens , Elapid Venoms/metabolism , Neuromuscular Blocking Agents/metabolism , Neuromuscular Junction/metabolism , Neuromuscular Junction/physiopathology , Snake Bites/metabolism , Time Factors
9.
Toxins (Basel) ; 12(8)2020 07 30.
Article in English | MEDLINE | ID: mdl-32751571

ABSTRACT

Intra-specific venom variation has the potential to provide important insights into the evolution of snake venom, but remains a relatively neglected aspect of snake venom studies. We investigated the venom from 13 individual coastal taipans Oxyuranus scutellatus from four localities on the north-east coast of Australia, spanning a distance of 2000 km. The intra-specific variation in taipan venom was considerably less than the inter-specific variation between it and the other Australian elapids to which it was compared. The electrophoretic venom profile of O. scutellatus was visually different to six other genera of Australian elapids, but not to its congener inland taipan O. microlepidotus. There was minimal geographical variation in taipan venom, as the intra-population variation exceeded the inter-population variation for enzymatic activity, procoagulant activity, and the abundance of neurotoxins. The pre-synaptic neurotoxin (taipoxin) was more abundant than the post-synaptic neurotoxins (3FTx), with a median of 11.0% (interquartile range (IQR): 9.7% to 18.3%; range: 6.7% to 23.6%) vs. a median of 3.4% (IQR: 0.4% to 6.7%; range: 0% to 8.1%). Three taipan individuals almost completely lacked post-synaptic neurotoxins, which was not associated with geography and occurred within two populations. We found no evidence of sexual dimorphism in taipan venom. Our study provides a basis for evaluating the significance of intra-specific venom variation within a phylogenetic context by comparing it to the inter-specific and inter-generic variation. The considerable intra-population variation we observed supports the use of several unpooled individuals from each population when making inter-specific comparisons.


Subject(s)
Elapid Venoms/chemistry , Elapidae , Animals , Australia , Blood Coagulation/drug effects , Chickens , Elapid Venoms/toxicity , Elapidae/genetics , Female , Humans , In Vitro Techniques , L-Amino Acid Oxidase/chemistry , Male , Muscle Contraction/drug effects , Muscle, Skeletal/drug effects , Muscle, Skeletal/physiology , Neurotoxins/analysis , Neurotoxins/toxicity , Phospholipases A2/chemistry , Rats , Species Specificity
10.
BMC Evol Biol ; 20(1): 9, 2020 01 13.
Article in English | MEDLINE | ID: mdl-31931699

ABSTRACT

BACKGROUND: The relative influence of diet and phylogeny on snake venom activity is a poorly understood aspect of snake venom evolution. We measured the activity of two enzyme toxin groups - phospholipase A2 (PLA2), and L-amino acid oxidase (LAAO) - in the venom of 39 species of Australian elapids (40% of terrestrial species diversity) and used linear parsimony and BayesTraits to investigate any correlation between enzyme activity and phylogeny or diet. RESULTS: PLA2 activity ranged from 0 to 481 nmol/min/mg of venom, and LAAO activity ranged from 0 to 351 nmol/min/mg. Phylogenetic comparative methods, implemented in BayesTraits showed that enzyme activity was strongly correlated with phylogeny, more so for LAAO activity. For example, LAAO activity was absent in both the Vermicella and Pseudonaja/Oxyuranus clade, supporting previously proposed relationships among these disparate taxa. There was no association between broad dietary categories and either enzyme activity. There was strong evidence for faster initial rates of change over evolutionary time for LAAO (delta parameter mean 0.2), but no such pattern in PLA2 (delta parameter mean 0.64). There were some exceptions to the phylogenetic patterns of enzyme activity: different PLA2 activity in the ecologically similar sister-species Denisonia devisi and D. maculata; large inter-specific differences in PLA2 activity in Hoplocephalus and Austrelaps. CONCLUSIONS: We have shown that phylogeny is a stronger influence on venom enzyme activity than diet for two of the four major enzyme families present in snake venoms. PLA2 and LAAO activities had contrasting evolutionary dynamics with the higher delta value for PLA2 Some species/individuals lacked activity in one protein family suggesting that the loss of single protein family may not incur a significant fitness cost.


Subject(s)
Elapid Venoms/enzymology , Elapidae/genetics , L-Amino Acid Oxidase/genetics , Phospholipases A2/genetics , Animals , Australia , Diet , Elapidae/classification , Phylogeny , Toxins, Biological
11.
Toxins (Basel) ; 9(9)2017 09 18.
Article in English | MEDLINE | ID: mdl-28927001

ABSTRACT

Advances in the last decade combining transcriptomics with established proteomics methods have made possible rapid identification and quantification of protein families in snake venoms. Although over 100 studies have been published, the value of this information is increased when it is collated, allowing rapid assimilation and evaluation of evolutionary trends, geographical variation, and possible medical implications. This review brings together all compositional studies of snake venom proteomes published in the last decade. Compositional studies were identified for 132 snake species: 42 from 360 (12%) Elapidae (elapids), 20 from 101 (20%) Viperinae (true vipers), 65 from 239 (27%) Crotalinae (pit vipers), and five species of non-front-fanged snakes. Approximately 90% of their total venom composition consisted of eight protein families for elapids, 11 protein families for viperines and ten protein families for crotalines. There were four dominant protein families: phospholipase A2s (the most common across all front-fanged snakes), metalloproteases, serine proteases and three-finger toxins. There were six secondary protein families: cysteine-rich secretory proteins, l-amino acid oxidases, kunitz peptides, C-type lectins/snaclecs, disintegrins and natriuretic peptides. Elapid venoms contained mostly three-finger toxins and phospholipase A2s and viper venoms metalloproteases, phospholipase A2s and serine proteases. Although 63 protein families were identified, more than half were present in <5% of snake species studied and always in low abundance. The importance of these minor component proteins remains unknown.


Subject(s)
Proteome , Snake Venoms/chemistry , Animals , Databases, Factual , Reptilian Proteins
12.
Clin Toxicol (Phila) ; 54(3): 241-4, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26852775

ABSTRACT

CONTEXT: Many bites from mildly venomous elapids occur but identification or presence of systemic envenoming is rarely confirmed. OBJECTIVE: To confirm systemic envenoming and binding of venom components to a commercial antivenom in a definite bite by the Ornamental Snake (Denisonia maculata) using enzyme immunoassays. CASE: A 9-year old boy was bitten by an identified Ornamental Snake. He developed nausea, vomiting, local pain, and swelling. He had a leucocytosis (white cell count, 20.8 × 10(9)/L), an elevated international normalised ratio (INR) of 1.6, but otherwise normal blood tests including D-Dimer and activated partial thromboplastin time. He was treated with Australian Black Snake antivenom because the commercial venom detection kit was positive for Black snake. He was admitted for 36 h with continuing local pain and swelling requiring parenteral analgesia. MATERIALS AND METHODS: Blood samples were collected with informed consent for measurement of venom and antivenom concentrations. Venom-specific enzyme immunoassays were developed using the closely related D. devisi venom with Rabbit anti-Notechis (Tiger Snake) and anti-Tropidechis (Rough-scaled Snake) IgG antibodies to detect venom in serum. Standard curves for measured venom versus actual venom concentrations were made to interpolate Denisonia venom concentrations. In vitro procoagulant and anticoagulant activity of venom was assayed. RESULTS: Denisonia venom was detected in the pre-antivenom sample as 9.6 ng/mL D. devisi venom. No antigenic venom components were detected in post-antivenom samples and there were high antivenom concentrations. D. devisi venom had mild in vitro procoagulant activity with a minimum concentration required to clot after 5 min of 2.5-5 µg/mL and even weaker anticoagulant activity. CONCLUSIONS: Denisonia bites appear to cause local effects and possibly mild systemic envenoming (with only non-specific systemic symptoms and leucocytosis), confirmed by detection of antigenic venom components in blood. A significant coagulopathy does not appear to occur.


Subject(s)
Elapid Venoms , Elapidae , Snake Bites/therapy , Animals , Antibodies/analysis , Antivenins/therapeutic use , Australia , Blood Coagulation/drug effects , Child , Edema/chemically induced , Edema/therapy , Elapid Venoms/chemistry , Elapid Venoms/immunology , Humans , Immunoenzyme Techniques , In Vitro Techniques , International Normalized Ratio , Leukocytosis/blood , Leukocytosis/chemically induced , Male , Pain/chemically induced , Snake Bites/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...