Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
STAR Protoc ; 4(1): 101974, 2023 03 17.
Article in English | MEDLINE | ID: mdl-36633947

ABSTRACT

Despite the known disease relevance of glycans, the biological function and substrate specificities of individual glycosyltransferases are often ill-defined. Here, we describe a protocol to develop chemical, bioorthogonal reporters for the activity of the GalNAc-T family of glycosyltransferases using a tactic termed bump-and-hole engineering. This allows identification of the protein substrates and glycosylation sites of single GalNAc-Ts. Despite requiring transfection of cells with the engineered transferases and enzymes for biosynthesis of bioorthogonal substrates, the tactic complements methods in molecular biology. For complete details on the use and execution of this protocol, please refer to Schumann et al. (2020)1, Cioce et al. (2021)2, and Cioce et al. (2022)3.


Subject(s)
N-Acetylgalactosaminyltransferases , Proteins , Humans , Glycosylation , Proteins/metabolism , Peptides/chemistry , Polysaccharides/chemistry , N-Acetylgalactosaminyltransferases/genetics , N-Acetylgalactosaminyltransferases/chemistry , N-Acetylgalactosaminyltransferases/metabolism
2.
Nat Commun ; 13(1): 6237, 2022 10 25.
Article in English | MEDLINE | ID: mdl-36284108

ABSTRACT

Altered glycoprotein expression is an undisputed corollary of cancer development. Understanding these alterations is paramount but hampered by limitations underlying cellular model systems. For instance, the intricate interactions between tumour and host cannot be adequately recapitulated in monoculture of tumour-derived cell lines. More complex co-culture models usually rely on sorting procedures for proteome analyses and rarely capture the details of protein glycosylation. Here, we report a strategy termed Bio-Orthogonal Cell line-specific Tagging of Glycoproteins (BOCTAG). Cells are equipped by transfection with an artificial biosynthetic pathway that transforms bioorthogonally tagged sugars into the corresponding nucleotide-sugars. Only transfected cells incorporate bioorthogonal tags into glycoproteins in the presence of non-transfected cells. We employ BOCTAG as an imaging technique and to annotate cell-specific glycosylation sites in mass spectrometry-glycoproteomics. We demonstrate application in co-culture and mouse models, allowing for profiling of the glycoproteome as an important modulator of cellular function.


Subject(s)
Proteome , Proteomics , Mice , Animals , Proteomics/methods , Glycoproteins/metabolism , Sugars , Nucleotides
3.
J Am Soc Mass Spectrom ; 32(9): 2366-2375, 2021 Sep 01.
Article in English | MEDLINE | ID: mdl-33871988

ABSTRACT

Mucin-type O-glycosylation is among the most complex post-translational modifications. Despite mediating many physiological processes, O-glycosylation remains understudied compared to other modifications, simply because the right analytical tools are lacking. In particular, analysis of intact O-glycopeptides by mass spectrometry is challenging for several reasons; O-glycosylation lacks a consensus motif, glycopeptides have low charge density which impairs ETD fragmentation, and the glycan structures modifying the peptides are unpredictable. Recently, we introduced chemically modified monosaccharide analogues that allowed selective tracking and characterization of mucin-type O-glycans after bioorthogonal derivatization with biotin-based enrichment handles. In doing so, we realized that the chemical modifications used in these studies have additional benefits that allow for improved analysis by tandem mass spectrometry. In this work, we built on this discovery by generating a series of new GalNAc analogue glycopeptides. We characterized the mass spectrometric signatures of these modified glycopeptides and their signature residues left by bioorthogonal reporter reagents. Our data indicate that chemical methods for glycopeptide profiling offer opportunities to optimize attributes such as increased charge state, higher charge density, and predictable fragmentation behavior.


Subject(s)
Click Chemistry/methods , Glycopeptides , Sugars , Glycopeptides/analysis , Glycopeptides/chemical synthesis , Glycopeptides/chemistry , Glycosylation , Mucins/chemistry , Protein Processing, Post-Translational , Proteomics , Sugars/analysis , Sugars/chemistry , Tandem Mass Spectrometry
4.
ACS Chem Biol ; 16(10): 1961-1967, 2021 10 15.
Article in English | MEDLINE | ID: mdl-33835779

ABSTRACT

Metabolic oligosaccharide engineering (MOE) has fundamentally contributed to our understanding of protein glycosylation. Efficient MOE reagents are activated into nucleotide-sugars by cellular biosynthetic machineries, introduced into glycoproteins and traceable by bioorthogonal chemistry. Despite their widespread use, the metabolic fate of many MOE reagents is only beginning to be mapped. While metabolic interconnectivity can affect probe specificity, poor uptake by biosynthetic salvage pathways may impact probe sensitivity and trigger side reactions. Here, we use metabolic engineering to turn the weak alkyne-tagged MOE reagents Ac4GalNAlk and Ac4GlcNAlk into efficient chemical tools to probe protein glycosylation. We find that bypassing a metabolic bottleneck with an engineered version of the pyrophosphorylase AGX1 boosts nucleotide-sugar biosynthesis and increases bioorthogonal cell surface labeling by up to two orders of magnitude. A comparison with known azide-tagged MOE reagents reveals major differences in glycoprotein labeling, substantially expanding the toolbox of chemical glycobiology.


Subject(s)
Galactosamine/analogs & derivatives , Galactosamine/metabolism , Galactosyltransferases/metabolism , Glucosamine/analogs & derivatives , Glucosamine/metabolism , Alkynes/chemistry , Amino Acid Sequence , Animals , Azides/chemistry , Cell Line, Tumor , Click Chemistry , Fluorescent Dyes/chemistry , Glycoproteins/chemistry , Glycoproteins/metabolism , Glycosylation , Humans , Metabolic Engineering/methods , Mice , Molecular Probes/chemistry , Oligosaccharides/biosynthesis , Polysaccharides/biosynthesis , Uridine Diphosphate Sugars/biosynthesis , Uridine Diphosphate Sugars/metabolism
5.
Exp Cell Res ; 402(2): 112564, 2021 05 15.
Article in English | MEDLINE | ID: mdl-33737069

ABSTRACT

The metabolic enzyme CTP synthase (CTPS) can form filamentous structures named cytoophidia in numerous types of cells, including follicle cells. However, the regulation of cytoophidium assembly remains elusive. The apicobasal polarity, a defining characteristic of Drosophila follicle epithelium, is established and regulated by a variety of membrane domains. Here we show that CTPS can form cytoophidia in Drosophila epithelial follicle cells. Cytoophidia localise to the basolateral side of follicle cells. If apical polarity regulators are knocked down, cytoophidia become unstable and distribute abnormally. Knockdown of basolateral polarity regulators has no significant effect on cytoophidia, even though the polarity is disturbed. Our results indicate that cytoophidia are maintained via polarised distribution on the basolateral side of Drosophila follicle epithelia, which is primarily achieved through the apical polarity regulators.


Subject(s)
Carbon-Nitrogen Ligases/genetics , Cell Polarity/genetics , Epithelium/growth & development , Ovarian Follicle/growth & development , Animals , Cytoplasm/genetics , Cytoskeleton/genetics , Drosophila Proteins/genetics , Drosophila melanogaster/genetics , Epithelium/metabolism , Female , Ovarian Follicle/metabolism
6.
Proc Natl Acad Sci U S A ; 117(41): 25293-25301, 2020 10 13.
Article in English | MEDLINE | ID: mdl-32989128

ABSTRACT

Protein glycosylation events that happen early in the secretory pathway are often dysregulated during tumorigenesis. These events can be probed, in principle, by monosaccharides with bioorthogonal tags that would ideally be specific for distinct glycan subtypes. However, metabolic interconversion into other monosaccharides drastically reduces such specificity in the living cell. Here, we use a structure-based design process to develop the monosaccharide probe N-(S)-azidopropionylgalactosamine (GalNAzMe) that is specific for cancer-relevant Ser/Thr(O)-linked N-acetylgalactosamine (GalNAc) glycosylation. By virtue of a branched N-acylamide side chain, GalNAzMe is not interconverted by epimerization to the corresponding N-acetylglucosamine analog by the epimerase N-acetylgalactosamine-4-epimerase (GALE) like conventional GalNAc-based probes. GalNAzMe enters O-GalNAc glycosylation but does not enter other major cell surface glycan types including Asn(N)-linked glycans. We transfect cells with the engineered pyrophosphorylase mut-AGX1 to biosynthesize the nucleotide-sugar donor uridine diphosphate (UDP)-GalNAzMe from a sugar-1-phosphate precursor. Tagged with a bioorthogonal azide group, GalNAzMe serves as an O-glycan-specific reporter in superresolution microscopy, chemical glycoproteomics, a genome-wide CRISPR-knockout (CRISPR-KO) screen, and imaging of intestinal organoids. Additional ectopic expression of an engineered glycosyltransferase, "bump-and-hole" (BH)-GalNAc-T2, boosts labeling in a programmable fashion by increasing incorporation of GalNAzMe into the cell surface glycoproteome. Alleviating the need for GALE-KO cells in metabolic labeling experiments, GalNAzMe is a precision tool that allows a detailed view into the biology of a major type of cancer-relevant protein glycosylation.


Subject(s)
Acetylgalactosamine/metabolism , Glycoproteins/metabolism , Acetylgalactosamine/chemistry , Gene Expression Regulation, Enzymologic , Glycosylation , Humans , Racemases and Epimerases/genetics , Racemases and Epimerases/metabolism , Substrate Specificity , Uridine Diphosphate N-Acetylgalactosamine/chemistry
7.
J Genet Genomics ; 47(3): 131-143, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32317150

ABSTRACT

Compartmentation of enzymes via filamentation has arisen as a mechanism for the regulation of metabolism. In 2010, three groups independently reported that CTP synthase (CTPS) can assemble into a filamentous structure termed the cytoophidium. In searching for CTPS-interacting proteins, here we perform a yeast two-hybrid screening of Drosophila proteins and identify a putative CTPS-interacting protein, △1-pyrroline-5-carboxylate synthase (P5CS). Using the Drosophila follicle cell as the in vivo model, we confirm that P5CS forms cytoophidia, which are associated with CTPS cytoophidia. Overexpression of P5CS increases the length of CTPS cytoophidia. Conversely, filamentation of CTPS affects the morphology of P5CS cytoophidia. Finally, in vitro analyses confirm the filament-forming property of P5CS. Our work links CTPS with P5CS, two enzymes involved in the rate-limiting steps in pyrimidine and proline biosynthesis, respectively.


Subject(s)
Carbon-Nitrogen Ligases/genetics , Cytoskeleton/genetics , Ornithine-Oxo-Acid Transaminase/genetics , Proline/biosynthesis , Animals , Cytidine Triphosphate/genetics , Cytidine Triphosphate/metabolism , Cytoskeleton/metabolism , Drosophila melanogaster/enzymology , Gene Expression Regulation, Enzymologic/genetics , Proline/genetics , Pyrimidines/metabolism
8.
Methods Mol Biol ; 1328: 179-89, 2015.
Article in English | MEDLINE | ID: mdl-26324438

ABSTRACT

We describe a user-friendly immunohistochemical approach for the detection of protein localization in Drosophila ovaries, here focusing on CTP synthase. This approach mainly uses fluorescently labeled antibodies to detect single, double, or multiple antigens. We provide a step-by-step protocol with detailed notes and tips, a simplified method that can also be adapted to detect protein localization beyond Drosophila ovaries.


Subject(s)
Carbon-Nitrogen Ligases/biosynthesis , Immunohistochemistry/methods , Ovarian Follicle/ultrastructure , Animals , Antibodies/chemistry , Carbon-Nitrogen Ligases/isolation & purification , Drosophila melanogaster , Female , Ovarian Follicle/metabolism
9.
J Genet Genomics ; 42(5): 261-74, 2015 May 20.
Article in English | MEDLINE | ID: mdl-26059773

ABSTRACT

CTP synthase (CTPsyn) is a metabolic enzyme responsible for the de novo synthesis of the nucleotide CTP. Several recent studies have shown that CTPsyn forms filamentous subcellular structures known as cytoophidia in bacteria, yeast, fruit flies and humans. However, it remains elusive whether and how CTPsyn and cytoophidia play a role during development. Here, we show that cytoophidia are abundant in the neuroepithelial stem cells in Drosophila optic lobes. Optic lobes are underdeveloped in CTPsyn mutants as well as in CTPsyn RNAi. Moreover, overexpressing CTPsyn impairs the development of optic lobes, specifically by blocking the transition from neuroepithelium to neuroblast. Taken together, our results indicate that CTPsyn is critical for optic lobe homeostasis in Drosophila.


Subject(s)
Carbon-Nitrogen Ligases/metabolism , Drosophila melanogaster/enzymology , Homeostasis , Optic Lobe, Nonmammalian/metabolism , Animals , Brain/cytology , Brain/embryology , Brain/enzymology , Carbon-Nitrogen Ligases/genetics , Drosophila melanogaster/cytology , Drosophila melanogaster/embryology , Drosophila melanogaster/genetics , Larva/cytology , Larva/enzymology , Larva/growth & development , Mutation , Neural Stem Cells/enzymology , Neural Stem Cells/metabolism , Neuroepithelial Cells/cytology , Neuroglia/enzymology , Neuroglia/metabolism , Optic Lobe, Nonmammalian/cytology , Optic Lobe, Nonmammalian/enzymology
11.
Development ; 139(9): 1547-56, 2012 May.
Article in English | MEDLINE | ID: mdl-22438571

ABSTRACT

In the Drosophila ovary, bone morphogenetic protein (BMP) ligands maintain germline stem cells (GSCs) in an undifferentiated state. The activation of the BMP pathway within GSCs results in the transcriptional repression of the differentiation factor bag of marbles (bam). The Nanos-Pumilio translational repressor complex and the miRNA pathway also help to promote GSC self-renewal. How the activities of different transcriptional and translational regulators are coordinated to keep the GSC in an undifferentiated state remains uncertain. Data presented here show that Mei-P26 cell-autonomously regulates GSC maintenance in addition to its previously described role of promoting germline cyst development. Within undifferentiated germ cells, Mei-P26 associates with miRNA pathway components and represses the translation of a shared target mRNA, suggesting that Mei-P26 can enhance miRNA-mediated silencing in specific contexts. In addition, disruption of mei-P26 compromises BMP signaling, resulting in the inappropriate expression of bam in germ cells immediately adjacent to the cap cell niche. Loss of mei-P26 results in premature translation of the BMP antagonist Brat in germline stem cells. These data suggest that Mei-P26 has distinct functions in the ovary and participates in regulating the fates of both GSCs and their differentiating daughters.


Subject(s)
Drosophila Proteins/metabolism , Drosophila/embryology , Gene Expression Regulation, Developmental/physiology , Germ Cells/cytology , Ovary/cytology , Signal Transduction/physiology , Stem Cells/cytology , Animals , Bone Morphogenetic Proteins/metabolism , Female , Germ Cells/metabolism , Immunohistochemistry , Immunoprecipitation , MicroRNAs/metabolism , Reverse Transcriptase Polymerase Chain Reaction , Stem Cells/metabolism
12.
Development ; 137(19): 3167-76, 2010 Oct.
Article in English | MEDLINE | ID: mdl-20724451

ABSTRACT

In the Drosophila ovary, extrinsic signaling from the niche and intrinsic translational control machinery regulate the balance between germline stem cell maintenance and the differentiation of their daughters. However, the molecules that promote the continued stepwise development of ovarian germ cells after their exit from the niche remain largely unknown. Here, we report that the early development of germline cysts depends on the Drosophila homolog of the human ataxin 2-binding protein 1 (A2BP1) gene. Drosophila A2BP1 protein expression is first observed in the cytoplasm of 4-, 8- and 16-cell cysts, bridging the expression of the early differentiation factor Bam with late markers such as Orb, Rbp9 and Bruno encoded by arrest. The expression of A2BP1 is lost in bam, sans-fille (snf) and mei-P26 mutants, but is still present in other mutants such as rbp9 and arrest. A2BP1 alleles of varying strength produce mutant phenotypes that include germline counting defects and cystic tumors. Phenotypic analysis reveals that strong A2BP1 alleles disrupt the transition from mitosis to meiosis. These mutant cells continue to express high levels of mitotic cyclins and fail to express markers of terminal differentiation. Biochemical analysis reveals that A2BP1 isoforms bind to each other and associate with Bruno, a known translational repressor protein. These data show that A2BP1 promotes the molecular differentiation of ovarian germline cysts.


Subject(s)
Cell Differentiation , Drosophila Proteins/metabolism , Drosophila melanogaster/cytology , Drosophila melanogaster/metabolism , Ovum/cytology , Ovum/metabolism , RNA-Binding Proteins/metabolism , Animals , Drosophila Proteins/genetics , Female , Meiosis , Mitosis , Mutation , Protein Binding , RNA-Binding Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...