Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Curr Res Food Sci ; 8: 100769, 2024.
Article in English | MEDLINE | ID: mdl-38800638

ABSTRACT

This study explores the effect of spray-drying (SD) inlet temperatures (Tinlet 120 and 150 °C) and wall material on the chemical and physico-chemical properties of microencapsulated hop extracts (MHE). Hop extract was formulated with maltodextrin (MD) and gum Arabic (GA) used in single or in combination with ß-cyclodextrin (ßCD). MHE were evaluated for physical properties, bitter acids (BA), total polyphenol content (TPC) and encapsulation efficiency (TPC EE), and antioxidant capacity (AOC). Powders produced at Tinlet 150 °C exhibited the highest flowability and generally higher TPC yield. Besides Tinlet, MD enabled the obtaining of MHE with the highest encapsulation efficiency. Other physico-chemical and antioxidant properties differently varied depending on the Tinlet. Overall, the ßCD addition positively affected α-acids, and ß-acids of MHE obtained at Tinlet 120 °C. ATR-FTIR analysis showed hydrogen bond formation between hop compounds and ßCD. Multifactorial ANOVA highlighted that Tinlet, W, and their interaction influenced almost all the chemical and physico-chemical properties of MHE.

2.
Antioxidants (Basel) ; 12(2)2023 Feb 10.
Article in English | MEDLINE | ID: mdl-36830001

ABSTRACT

In this study, freeze-drying microencapsulation was proposed as a technology for the production of powdered hop extracts with high stability intended as additives/ingredients in innovative formulated food products. The effects of different carriers (maltodextrin, Arabic gum, and their mixture in 1:1 w/w ratio) on the physical and techno-functional properties, bitter acids content, yield and polyphenols encapsulation efficiency of the powders were assessed. Additionally, the powders' stability was evaluated for 35 days at different temperatures and compared with that of non-encapsulated extract. Coating materials influenced the moisture content, water activity, colour, flowability, microstructure, and water sorption behaviour of the microencapsulates, but not their solubility. Among the different carriers, maltodextrin showed the lowest polyphenol load yield and bitter acid content after processing but the highest encapsulation efficiency and protection of hop extracts' antioxidant compounds during storage. Irrespective of the encapsulating agent, microencapsulation did not hinder the loss of bitter acids during storage. The results of this study demonstrate the feasibility of freeze-drying encapsulation in the development of functional ingredients, offering new perspectives for hop applications in the food and non-food sectors.

SELECTION OF CITATIONS
SEARCH DETAIL
...