Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Pharm ; 348(1-2): 46-53, 2008 Feb 04.
Article in English | MEDLINE | ID: mdl-17714895

ABSTRACT

Methacrylic acid copolymers have been shown to enhance release of weakly basic drugs from rate controlling polymer matrices through the mechanism of microenvironmental pH modulation. Since these matrices are typically formed through a compaction process, an understanding of the deformation behavior of these polymers in there neat form and in combination with rate controlling polymers such as HPMC is critical to their successful formulation. Binary mixes of two methacrylic acid copolymers, Eudragit L100 and L100-55 in combination with HPMC K4M were subjected to compaction studies on a compaction simulator. The deformation behavior of the powder mixes was analyzed based on pressure-porosity relationships, strain rate sensitivity (SRS), residual die wall force data and work of compaction. Methacrylic acid copolymers, L100-55 and L-100 and the hydrophilic polymer, HPMC K4M exhibited Heckel plots representative of plastic deformation although L-100 exhibited significantly greater resistance to densification as evident from the high yield pressure values ( approximately 120MPa). The yield pressures for the binary mixes were linearly related to the weight fractions of the components. All powder mixes exhibited significant speed sensitivity with SRS values ranging from 21.7% to 42.4%. The residual die-wall pressures indicated that at slow speeds (1mm/s) and at lower pressures (<150MPa), HPMC possesses significant elastic behavior. However, the good compacts formed at this punch speed indicate significant plastic deformation and bond formation which is able to predominate over the elastic recovery component. The apparent mean yield pressure values, the residual die-wall forces and the net work of compaction exhibited a linear relationship with mixture composition, thereby indicating predictability of these parameters based on the behavior of the neat materials.


Subject(s)
Acrylic Resins/chemistry , Methylcellulose/analogs & derivatives , Polymethacrylic Acids/chemistry , Powders/chemistry , Elasticity , Hypromellose Derivatives , Mechanics , Methylcellulose/chemistry , Microscopy , Pharmaceutical Vehicles/chemistry , Pressure , Stress, Mechanical , Tablets/chemistry
2.
J Pharm Sci ; 95(7): 1459-68, 2006 Jul.
Article in English | MEDLINE | ID: mdl-16729265

ABSTRACT

For weakly basic drugs, pH-dependent solubility characteristics can translate into low and incomplete release of these drugs from sustained release formulations. The objective of this study was to quantitatively analyze the relationship between microenvironmental pH modulation and release enhancement of a weakly basic drug in the free base form. A prototype matrix system primarily consisting of trimethoprim (pK(a) 6.6), hydroxypropyl methylcellulose (HPMC), and a polymeric or nonpolymeric pH modulator was used. Incorporation of the methacrylic acid polymer, Eudragit L100-55 resulted in marginal release enhancement as the pH modulation effected by this polymer was attenuated by the basicity of the drug. Water uptake and scanning electron microscopy (SEM) studies suggested that Eudragit L100-55 incorporation also resulted in reduced water uptake and matrix permeability. The effect of nonpolymeric pH modulators on release enhancement was also studied. The lowering in microenvironmental pH by malic acid was sufficiently high and persistent to result in pH-independent release. A correlation plot between the experimentally determined microenvironmental pH, effected by the polymeric and nonpolymeric pH modulators, and percent drug release, exhibited good linearity with a correlation coefficient of 0.83; thereby, indicating that drug diffusion across the gel barrier is the predominating mechanism of release.


Subject(s)
Acrylic Resins/chemistry , Methylcellulose/analogs & derivatives , Trimethoprim/chemistry , Carboxylic Acids/chemistry , Hydrogen-Ion Concentration , Hypromellose Derivatives , Methylcellulose/chemistry , Solubility , Water/chemistry
3.
AAPS PharmSciTech ; 6(1): E91-9, 2005 Sep 20.
Article in English | MEDLINE | ID: mdl-16353969

ABSTRACT

The goal of this study was to assess the utility of near infrared (NIR) spectroscopy for the determination of content uniformity, tablet crushing strength (tablet hardness), and dissolution rate in sulfamethazine veterinary bolus dosage forms. A formulation containing sulfamethazine, corn starch, and magnesium stearate was employed. The formulations were wet granulated with a 10% (wt/vol) starch paste in a high shear granulator and dried at 60 degrees C in a convection tray dryer. The tablets were compressed on a Stokes B2 rotary tablet press running at 30 rpm. Each sample was scanned in reflectance mode in the wavelengths of the NIR region. Principal component analysis (PCA) of the NIR tablet spectra and the neat raw materials indicated that the scores of the first 2 principal components were highly correlated with the chemical and physical attributes. Based on the PCA model, the significant wavelengths for sulfamethazine are 1514, (1660-1694), 2000, 2050, 2150, 2175, 2225, and 2275 nm; for corn starch are 1974, 2100, and 2325 nm; and for magnesium stearate are 2325 and 2375 nm. In addition, the loadings show large negative peaks around the water band regions ( approximately 1420 and 1940 nm), indicating that the partial least squares (PLS) models could be affected by product water content. A simple linear regression model was able to predict content uniformity with a correlation coefficient of 0.986 at 1656 nm; the use of a PLS regression model, with 3 factors, had an r (2) of 0.9496 and a standard error of calibration of 0.0316. The PLS validation set had an r (2) of 0.9662 and a standard error of 0.0354. PLS calibration models, based on tablet absorbance data, could successfully predict tablet crushing strength and dissolution in spite of varying active pharmaceutical ingredient (API) levels. Prediction plots based on these PLS models yielded correlation coefficients of 0.84 and 0.92 on independent validation sets for crushing strength and Q(120) (percentage dissolved in 120 minutes), respectively.


Subject(s)
Spectroscopy, Near-Infrared/methods , Sulfamethazine/analysis , Sulfamethazine/chemistry , Compressive Strength , Dosage Forms , Reproducibility of Results , Solubility
4.
J Pharm Sci ; 93(9): 2319-31, 2004 Sep.
Article in English | MEDLINE | ID: mdl-15295792

ABSTRACT

Weakly basic drugs and their salts exhibit a drop in aqueous solubility at high pH conditions, which can result in low and incomplete release of these drugs from sustained release formulations. The objective of this study is to modulate matrix microenvironmental pH by incorporation of acidic polymers and thus enhance the local solubility and release of basic drugs in high pH environment. Two weakly basic drugs, papaverine hydrochloride and verapamil hydrochloride with widely different pKa and aqueous solubilities at the pH of interest (6.8), were investigated for their release from hydrophilic matrices and the effect of a methacrylic (Eudragit L100-55) and an acrylic acid polymer (Carbopol 71G), were studied. For papaverine HCl, release increased with an increase in the levels of the acidic polymer used. Direct measurement of matrix pH using microelectrodes illustrated that the mechanism of release enhancement was based on modulation of microenvironmental pH. For verapamil HCl, incorporation of L100-55 resulted in release retardation due to an interaction between the anionic polymer and the cationic drug and the extent of retardation increased with an increase in the polymer level. The interaction product was characterized by NIR, FT-IR, and MTDSC techniques. Verapamil HCl release from Carbopol 71G based matrix tablets was higher than that from conventional hydroxypropyl methylcellulose (HPMC) based matrices, without any incorporated acidic additives.


Subject(s)
Acrylic Resins/chemistry , Delayed-Action Preparations/chemistry , Methacrylates/chemistry , Acrylic Resins/pharmacokinetics , Delayed-Action Preparations/pharmacokinetics , Hydrogen-Ion Concentration , Methacrylates/pharmacokinetics
5.
AAPS PharmSci ; 4(4): E45, 2002.
Article in English | MEDLINE | ID: mdl-12646015

ABSTRACT

Four non-polymeric plasticizers, propylene glycol, diethyl phthalate, triacetin, and glycerin have been subjected to rising temperature thermogravimetry for kinetic analysis and vaporization-based thermal stability evaluation. Since volatile loss of a substance is a function of its vapor pressure, the thermal stability of these plasticizers has been analyzed by generating vapor pressure curves using the Antoine and Langmuir equations. Unknown Antoine constants for the sample compounds, triacetin and glycerin have been derived by subjecting the vapor pressure curves to nonlinear regression. For the first time, the entire process of obtaining the unknown Antoine constants through thermogravimetry has been validated by developing an approach called the 'double reference method.' Based on this method, it has been possible to show that this technique is accurate even for structurally diverse compounds. Kinetic analysis on the volatilization of compounds revealed a predominant zero order process. The activation energy values for vaporization of propylene glycol, diethyl phthalate, triacetin, and glycerin, as deduced from the Arrhenius plots, have been determined to be 55.80, 66.45, 65.12, and 67.54 kJ/mol, respectively. The enthalpies of vaporization of the compounds have been determined from the Clausius-Clapeyron plots. Rising temperature thermogravimetry coupled with nonlinear regression analysis has been shown to be an effective and rapid technique for accurately predicting the vapor pressure behavior and thermal stability evaluation of volatile compounds.


Subject(s)
Plasticizers/chemistry , Chemistry, Pharmaceutical , Drug Stability , Kinetics , Models, Chemical , Reproducibility of Results , Temperature , Thermogravimetry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...