Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Am J Reprod Immunol ; 91(5): e13861, 2024 May.
Article in English | MEDLINE | ID: mdl-38716765

ABSTRACT

BACKGROUND: Maternal-fetal immunology is intricate, and the effects of mRNA-S maternal vaccination on immune regulation at the maternal-fetal interface require further investigation. Our study endeavors to elucidate these immunological changes, enhancing our comprehension of maternal and fetal health outcomes. By analyzing immune profiles and cytokine responses, we aim to provide valuable insights into the impact of mRNA-S vaccination on the delicate balance of immune regulation during pregnancy, addressing critical questions in the field of reproductive pharmacology. OBJECTIVES: This investigation sought to examine the prospective influence of mRNA-S-based vaccines and extracellular vesicles (EVs) containing the Spike (S) protein at the maternal-fetal interface. Our primary emphasis was on evaluating their effects on maternal decidua cells and fetal chorion trophoblast cells (hFM-CTCs). METHODS: We validated the generation of EVs containing the S protein from small human airway epithelial cell lines (HSAECs) following mRNA-S vaccine exposure. We assessed the expression of angiotensin-converting enzyme 2 (ACE2) gene and protein in fetal membranes and the placenta, with specific attention to decidual cells and fetal membrane chorion cells. To assess cellular functionality, these cells were exposed to both recombinant S protein and EVs loaded with S proteins (eSPs). RESULTS: Our findings revealed that cells and EVs subjected to mRNA-S-based vaccination exhibited altered protein expression levels of S proteins. At the feto-maternal interface, both placental and fetal membrane tissues demonstrated similar ACE-2 expression levels. Among individual cellular layers, syncytiotrophoblast cells in the placenta and chorion cells in the fetal membrane exhibited elevated ACE-2 expression. Notably, EVs derived from HSAECs activated the MAPK pathway in decidual cells. Additionally, decidual cells displayed a substantial increase in gene expression of chemokines like CXCL-10 and CXCL-11, as well as proinflammatory cytokines such as IL-6 in response to eSPs. However, the levels of Ccl-2 and IL-1ß remained unchanged in decidual cells under the same conditions. Conversely, hFM-CTCs demonstrated significant alterations in the proinflammatory cytokines and chemokines with respect to eSPs. CONCLUSION: In conclusion, our study indicates that mRNA-S-based maternal vaccination during pregnancy may influence the maternal-fetal interface's COVID-19 interaction and immune regulation. Further investigation is warranted to assess safety and implications.


Subject(s)
Extracellular Vesicles , Trophoblasts , Humans , Female , Pregnancy , Trophoblasts/immunology , Extracellular Vesicles/immunology , Extracellular Vesicles/metabolism , Decidua/immunology , Spike Glycoprotein, Coronavirus/immunology , Cytokines/metabolism , Vaccination , Angiotensin-Converting Enzyme 2/metabolism , Angiotensin-Converting Enzyme 2/genetics , Maternal-Fetal Exchange , SARS-CoV-2/immunology , COVID-19/prevention & control , COVID-19/immunology , Cell Line , COVID-19 Vaccines/immunology , RNA, Messenger/metabolism , RNA, Messenger/genetics
2.
Cell Stem Cell ; 31(3): 378-397.e12, 2024 03 07.
Article in English | MEDLINE | ID: mdl-38402617

ABSTRACT

Mechanisms governing the maintenance of blood-producing hematopoietic stem and multipotent progenitor cells (HSPCs) are incompletely understood, particularly those regulating fate, ensuring long-term maintenance, and preventing aging-associated stem cell dysfunction. We uncovered a role for transitory free cytoplasmic iron as a rheostat for adult stem cell fate control. We found that HSPCs harbor comparatively small amounts of free iron and show the activation of a conserved molecular response to limited iron-particularly during mitosis. To study the functional and molecular consequences of iron restriction, we developed models allowing for transient iron bioavailability limitation and combined single-molecule RNA quantification, metabolomics, and single-cell transcriptomic analyses with functional studies. Our data reveal that the activation of the limited iron response triggers coordinated metabolic and epigenetic events, establishing stemness-conferring gene regulation. Notably, we find that aging-associated cytoplasmic iron loading reversibly attenuates iron-dependent cell fate control, explicating intervention strategies for dysfunctional aged stem cells.


Subject(s)
Hematopoiesis , Iron , Hematopoiesis/genetics , Iron/metabolism , Hematopoietic Stem Cells/metabolism , Multipotent Stem Cells/metabolism , Gene Expression Regulation , Cell Differentiation
3.
J Exp Med ; 219(11)2022 11 07.
Article in English | MEDLINE | ID: mdl-36053753

ABSTRACT

Thrombocytopenia, prevalent in the majority of patients with myeloid malignancies, such as myelodysplastic syndrome (MDS) or acute myeloid leukemia (AML), is an independent adverse prognostic factor. Azacitidine (AZA), a mainstay therapeutic agent for stem cell transplant-ineligible patients with MDS/AML, often transiently induces or further aggravates disease-associated thrombocytopenia by an unknown mechanism. Here, we uncover the critical role of an acute type-I interferon (IFN-I) signaling activation in suppressing megakaryopoiesis in AZA-mediated thrombocytopenia. We demonstrate that megakaryocytic lineage-primed progenitors present IFN-I receptors and, upon AZA exposure, engage STAT1/SOCS1-dependent downstream signaling prematurely attenuating thrombopoietin receptor (TPO-R) signaling and constraining megakaryocytic progenitor cell growth and differentiation following TPO-R stimulation. Our findings directly implicate RNA demethylation and IFN-I signal activation as a root cause for AZA-mediated thrombocytopenia and suggest mitigation of TPO-R inhibitory innate immune signaling as a suitable therapeutic strategy to support platelet production, particularly during the early phases of AZA therapy.


Subject(s)
Leukemia, Myeloid, Acute , Myelodysplastic Syndromes , Thrombocytopenia , Azacitidine/pharmacology , Azacitidine/therapeutic use , Humans , Immunity, Innate , Leukemia, Myeloid, Acute/drug therapy , Leukemia, Myeloid, Acute/pathology , Myelodysplastic Syndromes/drug therapy , Myelodysplastic Syndromes/pathology
SELECTION OF CITATIONS
SEARCH DETAIL