Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Chem Chem Phys ; 26(16): 12753-12763, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38619367

ABSTRACT

In a previous study, electrospray ionization, collision-induced dissociation (CID), and gas-phase ion-molecule reactions were used to create and characterize ions derived from homogeneous precursors composed of a uranyl cation (UVIO22+) coordinated by either formate or acetate ligands [E. Perez, C. Hanley, S. Koehler, J. Pestok, N. Polonsky and M. Van Stipdonk, Gas phase reactions of ions derived from anionic uranyl formate and uranyl acetate complexes, J. Am. Soc. Mass Spectrom., 2016, 27, 1989-1998]. Here, we describe a follow-up study of anionic complexes that contain a mix of formate and acetate ligands, namely [UO2(O2C-CH3)2(O2C-H)]- and [UO2(O2C-CH3)(O2C-H)2]-. Initial CID of either anion causes decarboxylation of a formate ligand to create carboxylate-coordinated U-hydride product ions. Subsequent CID of the hydride species causes elimination of acetaldehyde or formaldehyde, consistent with reactions that include intra-complex hydride attack upon bound acetate or formate ligands, respectively. Density functional theory (DFT) calculations reproduce the experimental observations, including the favored elimination of formaldehyde over acetaldehyde by hydride attack during CID of [UO2(H)(O2C-CH3)(O2C-H)]-. We also discovered that MSn CID of the acetate-formate complexes leads to generation of the oxyl-methide species, [UO2(O)(CH3)]-, which reacts with H2O to generate [UO2(O)(OH)]-. DFT calculations support the observation that formation of [UO2(O)(OH)]- by elimination of CH4 is favored over H2O addition and rearrangement to create [UO2(OH)2(CH3)]-.

2.
J Phys Chem A ; 125(25): 5544-5555, 2021 Jul 01.
Article in English | MEDLINE | ID: mdl-34138571

ABSTRACT

Uranium trioxide, UO3, has a T-shaped structure with bent uranyl, UO22+, coordinated by an equatorial oxo, O2-. The structure of cation UO3+ is similar but with an equatorial oxyl, O•-. Neutral and cationic uranium trioxide coordinated by nitrates were characterized by collision induced dissociation (CID), infrared multiple-photon dissociation (IRMPD) spectroscopy, and density functional theory. CID of uranyl nitrate, [UO2(NO3)3]- (complex A1), eliminates NO2 to produce nitrate-coordinated UO3+, [UO2(O•)(NO3)2]- (B1), which ejects NO3 to yield UO3 in [UO2(O)(NO3)]- (C1). Finally, C1 associates with H2O to afford uranyl hydroxide in [UO2(OH)2(NO3)]- (D1). IRMPD of B1, C1, and D1 confirms uranyl equatorially coordinated by nitrate(s) along with the following ligands: (B1) radical oxyl O•-; (C1) oxo O2-; and (D1) two hydroxyls, OH-. As the nitrates are bidentate, the equatorial coordination is six in A1, five in B1, four in D1, and three in C1. Ligand congestion in low-coordinate C1 suggests orbital-directed bonding. Hydrolysis of the equatorial oxo in C1 epitomizes the inverse trans influence in UO3, which is uranyl with inert axial oxos and a reactive equatorial oxo. The uranyl ν3 IR frequencies indicate the following donor ordering: O2-[best donor] ≫ O•-> OH-> NO3-.

3.
J Am Soc Mass Spectrom ; 30(5): 796-805, 2019 May.
Article in English | MEDLINE | ID: mdl-30911904

ABSTRACT

Because of the high stability and inertness of the U=O bonds, activation and/or functionalization of UO22+ and UO2+ remain challenging tasks. We show here that collision-induced dissociation (CID) of the uranyl-propiolate cation, [UVIO2(O2C-C≡CH)]+, can be used to prepare [UVIO2(C≡CH)]+ in the gas phase by decarboxylation. Remarkably, CID of [UVIO2(C≡CH)]+ caused elimination of CO to create [OUVICH]+, thus providing a new example of a well-defined substitution of an "yl" oxo ligand of UVIO22+ in a unimolecular reaction. Relative energies for candidate structures based on density functional theory calculations suggest that the [OUVICH]+ ion is a uranium-methylidyne product, with a U≡C triple bond composed of one σ-bond with contributions from the U df and C sp hybrid orbitals, and two π-bonds with contributions from the U df and C p orbitals. Upon isolation, without imposed collisional activation, [OUVICH]+ appears to react spontaneously with O2 to produce [UVO2]+. Graphical Abstract .

4.
Rapid Commun Mass Spectrom ; 32(13): 1085-1091, 2018 Jul 15.
Article in English | MEDLINE | ID: mdl-29645301

ABSTRACT

RATIONALE: In a previous study [Rapid Commun Mass Spectrom. 2004;18:3028-3034], collision-induced dissociation (CID) of [UVI O2 (ClO4 )]+ appeared to be influenced by the high levels of background H2 O in a quadrupole ion trap. The CID of the same species was re-examined here with the goal of determining whether additional, previously obscured dissociation pathways would be revealed under conditions in which the level of background H2 O was lower. METHODS: Water- and methanol-coordinated [UVI O2 (ClO4 )]+ precursor ions were generated by electrospray ionization. Multiple-stage tandem mass spectrometry (MSn ) for CID and ion-molecule reaction (IMR) studies was performed using a linear ion trap mass spectrometer. RESULTS: Under conditions of low background H2 O, CID of [UVI O2 (ClO4 )]+ generates [UVI O2 (Cl)]+ , presumably by elimination of two O2 molecules. Using low isolation/reaction times, we found that [UVI O2 (Cl)]+ will undergo an IMR with H2 O to generate [UVI O2 (OH)]+ . CONCLUSIONS: With lower levels of background H2 O, CID experiments reveal that the intrinsic dissociation pathway for [UVI O2 (ClO4 )]+ leads to [UVI O2 (Cl)]+ , apparently by loss of two O2 molecules. We propose that the results reported in the earlier CID study reflected a two-step process: initial formation of [UVI O2 (Cl)]+ by CID, followed by a very rapid hydrolysis reaction to leave [UVI O2 (OH)]+ .

SELECTION OF CITATIONS
SEARCH DETAIL
...