Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Bioresour Technol ; 372: 128600, 2023 Mar.
Article in English | MEDLINE | ID: mdl-36634880

ABSTRACT

n-Hexane and N, N-dimethylacetamide (DMAC) are two major volatile organic compounds (VOCs) discharged from the pharmaceutical industry. To enhance DMAC-facilitated n-hexane removal, we investigated the simultaneous removal of multiple pollutants in a rotating drum biofilter packed with bamboo charcoal-polyurethane composite. After adding 800 mg·L-1 DMAC, the n-hexane removal efficiency increased from 59.4 % to 83.1 % under the optimized conditions. The maximum elimination capacity of 10.0 g·m-3·h-1n-hexane and 157 g·m-3·h-1 DMAC were obtained. The biomass of bamboo charcoal-polyurethane and the ratio of protein-to-polysaccharide in extracellular polymeric substances were significantly increased compared with the non-DMAC stage, which is attributed to increased carbon utilization. In addition, Na+ K+-ATPase was positively correlated with increasing electron transport system activity, which was 1.98 and 1.36 times greater. Hydrophilic DMAC improved the bioavailability of hydrophobic n-hexane and benefited bacterial metabolism. Co-degradation of n-hexane and DMAC system can be used for other volatile organic pollutants.


Subject(s)
Charcoal , Environmental Pollutants , Polyurethanes , Filtration
2.
Chemosphere ; 311(Pt 2): 137071, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36328323

ABSTRACT

Tris (2-ethylhexyl) phosphate (TEHP) is a common organophosphorus flame retardant analog with considerable ecological toxicity. Here, novel strain Ochrobactrum tritici WX3-8 capable of degrading TEHP as the sole C source was isolated. Our results show that the strain's TEHP degradation efficiency reached 75% after 104 h under optimal conditions, i.e., 30 °C, pH 7, bacterial inoculum 3%, and

3.
Chemosphere ; 303(Pt 1): 134935, 2022 Sep.
Article in English | MEDLINE | ID: mdl-35561776

ABSTRACT

In this work, Rhodococcus ruber HJM-8 and Paracoccus communis YBH-X were isolated and used to enhance N,N-dimethylacetamide (DMAC) degradation and mineralization efficiencies. The monoculture and co-culture of the two strains for DMAC degradation were compared; results indicated that, a degradation efficiency of 97.62% was obtained in co-culture, which was much higher than that of monocultures of HJM-8 (57.34%) and YBH-X (34.02%). The degradation mechanism showed that co-culture could efficiently improve extracellular polymeric substances production, electron transfer, and microbial activity. Meanwhile, the mineralization mechanism suggested that acetate was the dominant intermediate which had an inhibitory effect on HJM-8, and co-culture was conducive to mineralization due to the high performance of acetate conversion and Na+ K+-ATPase vitality. Besides, a pathway of DMAC biodegradation was proposed for co-culture: DMAC was degraded into acetate by HJM-8, then the accumulated acetate was mineralized by YBH-X. Additionally, the co-culture system was further optimized by Box-Behnken design.


Subject(s)
Rhodococcus , Acetamides , Biodegradation, Environmental , Coculture Techniques , Paracoccus , Rhodococcus/metabolism
4.
Bioresour Technol ; 345: 126427, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34838976

ABSTRACT

Bamboo charcoal powder-based polyurethane (BC-PU) was firstly applied in biotrickling filter to treat n-hexane and dichloromethane (DCM) simultaneously. Maximum elimination capacity of 12.68 g m-3h-1 n-hexane was achieved and exceed 30.28 g m-3h-1 DCM could be degraded. BTF respond quickly to the mixed shock loadings, and recovered to 76% and 100% respectively in less than 1 h. By increasing inlet loading (IL) of DCM from 6.20 g m-3h-1 to 28.36 g m-3h-1, the removal efficiency of n-hexane decreased from 73.4% to 55.9% corresponding to the IL of 19.96 g m-3h-1. N-hexane degradation was inhibited by high IL of DCM due to enzymes competition for active sites. The growth of key microorganisms Mycobacterium sp., Hyphomicrobium sp. was stimulated and colonized. BC-PU is an innovative and applicable bio-based material in the process of biological purification, which could be widely applied to treat hydrophobic pollutants in the pharmaceutical industry.


Subject(s)
Air Pollutants , Methylene Chloride , Biodegradation, Environmental , Bioreactors , Charcoal , Filtration , Hexanes , Polyurethanes , Powders
5.
Chemosphere ; 281: 130718, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34044302

ABSTRACT

Multi walled carbon nanotubes (MWCNTs) have attracted more and more attention as adsorbents due to their excellent adsorption properties. By loading metal particles on MWCNTs, the chemical reduction ability of adsorbed pollutants could be provided, so as to achieve the purpose of adsorption and degradation of pollutants. Therefore, the removal process of NO3--N by Fe-Pd-Fe3O4/MWCNTs was studied, including rapid adsorption of initial pollutants, gradual reduction of intermediate products and re-adsorption of final products. The results showed that Fe-Pd-Fe3O4/MWCNTs completely removed NO3--N within 2 h, 39% and 25% of which were converted into NO2--N and NH4+-N. The adsorption efficiency, kinetics, capacity and adsorption energy all followed the order of NH4+-N > NO2--N > NO3--N. With the recoverability and reusability of Fe-Pd-Fe3O4/MWCNTs having been confirmed in 5 consecutive cycles, the removal rate of NO3--N still reached 43%. It has been shown that MWCNTs prolonged the reducing power for NO3--N, due to avoiding the aggregation of metal particles. The rapid adsorption of initial pollutants, effective stepwise reduction and convenient recovery processes were of great value for the rehabilitation of polluted water.


Subject(s)
Nanotubes, Carbon , Water Pollutants, Chemical , Adsorption , Kinetics , Nitrates , Nitrogen Oxides , Water Pollutants, Chemical/analysis
6.
Environ Sci Pollut Res Int ; 28(35): 48718-48727, 2021 Sep.
Article in English | MEDLINE | ID: mdl-33913111

ABSTRACT

Sulfur-containing wastewater is very common as an industrial waste, yet a high-efficiency composite microbial agent for sulfur-containing wastewater treatment is still lacking. In this work, three novel and efficient desulfurizing bacteria were isolated from the sewage treatment tank of Zhejiang Satellite Energy Co., Ltd. They were identified as Brucella melitensis (S1), Ochrobactrum oryzae (S8), and Achromobacter xylosoxidans (S9). These three strains of bacteria were responsible for the oxidative metabolism of sodium sulfide via a similar polythionate pathway, which could be expressed as follows: S2-→S2O32-/S0→SO32-→SO42-. Activated carbon, wheat bran, and diatomite at 1:1:1 ratio are used as carriers to construct a composite microbial agent containing the three bacteria. The desulfurization efficiency of 95% was predicted by response surface methodology under the following optimum conditions: the dosage of the inoculum was 3 g/L, pH 7.86, and temperature of 39 °C. Additionally, the impact resistance was studied in the anaerobic sequencing batch reactor. The removal capacity of microbial agent reached 98%. High-throughput analysis showed that composite microbial agent increased bacterial evenness and diversity, and the relative abundance of Brucellaceae increased from 5.04 to 8.79% in the reactor. In the process of industrial wastewater transformation, the transformation rate of sulfide by composite microbial agent was maintained between 70 and 81%. The composite microbial agent had potential for the treatment of sulfur-containing wastewater.


Subject(s)
Microbiota , Sewage , Anaerobiosis , Bioreactors , Biotransformation , Ochrobactrum , Sulfides , Waste Disposal, Fluid , Wastewater
7.
Bioresour Technol ; 327: 124785, 2021 May.
Article in English | MEDLINE | ID: mdl-33582520

ABSTRACT

Aiming at the accumulation of NO2--N and N2O during denitrification process, this work focused to improve the denitrification performance by Pd-Fe embedded multi-walled carbon nanotubes (MWCNTs). The main conclusions were as follows: 30 mg/L Pd-Fe/MWCNTs have shown an excellent promotion on denitrification (completely TN removal at 36 h). Meanwhile, enzyme activity results indicated that the generation of NO2--N, NH4+-N by Pd-Fe/MWCNTs led the occur of short-cut denitrification by increasing 203.9% the nitrite reductase activity. Furthermore, electrochemical results and index correlation analysis confirmed that the electron exchange capacity (1.401 mmol eg-1) of Pd-Fe/MWCNTs was positively related to nitrite reductase activity, indicating its crucial role in electron transport activity (0.46 µg O2/(protein·min) at 24 h) during denitrification process by Pd-Fe/MWCNTs played a role of chemical reductant and redox mediator.


Subject(s)
Alcaligenes , Nanotubes, Carbon , Denitrification , Electron Transport , Oxidation-Reduction
8.
Bioprocess Biosyst Eng ; 43(5): 811-820, 2020 May.
Article in English | MEDLINE | ID: mdl-31915960

ABSTRACT

A novel and efficient facultative anaerobic denitrifying bacterium was isolated and identified as Pseudomonas citronellolis WXP-4. The strain WXP-4 could achieve 100% nitrate and nitrite removal efficiency utilizing sodium succinate as a carbon source, C/N ratio 7, pH 7.0, and temperature 40 °C under both aerobic and anaerobic conditions. The bacterium could tolerate a wide range of NO3--N concentrations from 100 to 1000 mg/L with a maximum nitrogen removal rate of 32.05 mg/(L h). An interesting phenomenon was found that no N2O emission occurred during the denitrifying process under anaerobic conditions, while there was 0.06 mg/L under aerobic conditions. This phenomenon had been confirmed by fluorescence quantitative PCR and the results showed that the relative abundance of nosZ gene increased by 17-fold based on the ratio of anaerobic to aerobic, and thus, nosZ gene could encode more nitrous oxide reductase to accelerate the conversion of N2O under anaerobic conditions. Moreover, the narG, nirK, and norB genes were also identified in the denitrifying pathway of the strain WXP-4. This investigation has demonstrated enormous potential for the future application in wastewater treatment systems.


Subject(s)
Bacterial Proteins/metabolism , Denitrification , Nitrates/metabolism , Nitrous Oxide/metabolism , Pseudomonas/metabolism , Aerobiosis , Anaerobiosis , Bacterial Proteins/genetics , Pseudomonas/genetics , Pseudomonas/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...