Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Biology (Basel) ; 11(11)2022 Oct 23.
Article in English | MEDLINE | ID: mdl-36358254

ABSTRACT

Mutations in NRAS constitutively activate cell proliferation signaling in malignant neoplasms, such as leukemia and melanoma, and the clarification of comprehensive downstream genes of NRAS might lead to the control of cell-proliferative signals of NRAS-driven cancers. We previously established that NRAS expression and proliferative activity can be controlled with doxycycline and named as THP-1 B11. Using a CRISPR activation library on THP-1 B11 cells with the NRAS-off state, survival clones were harvested, and 21 candidate genes were identified. By inducting each candidate guide RNA with the CRISPR activation system, DOHH, HIST1H2AC, KRT32, and TAF6 showed higher cell-proliferative activity. The expression of DOHH, HIST1H2AC, and TAF6 was definitely upregulated with NRAS expression. Furthermore, MEK inhibitors resulted in the decreased expression of DOHH, HIST1H2AC, and TAF6 proteins in parental THP-1 cells. The knockdown of DOHH, HIST1H2AC, and TAF6 was found to reduce proliferation in THP-1 cells, indicating that they are involved in the downstream proliferation of NRAS. These molecules are expected to be new therapeutic targets for NRAS-mutant leukemia cells.

2.
Mol Genet Metab Rep ; 14: 36-40, 2018 Mar.
Article in English | MEDLINE | ID: mdl-29326871

ABSTRACT

Mucopolysaccharidosis (MPS) is a genetic disorder characterized by the accumulation of glycosaminoglycans in the body. Of the multiple MPS disease subtypes, several are caused by defects in sulfatases. Specifically, a defect in iduronate-2-sulfatase (ID2S) leads to MPS II, whereas N-acetylgalactosamine-6-sulfatase (GALN) and N-acetylgalactosamine-4-sulfatase (ARSB) defects relate to MPS IVA and MPS VI, respectively. A previous study reported a combined assay for these three disorders in a 96-well plate using a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based technique (Kumar et al., Clin Chem 2015 61(11):1363-1371). In our study, we applied this methodology to a Japanese population to examine the assay precision and the separation of populations between disease-affected individuals and controls for these three disorders. Within our assay conditions, the coefficient of variation (CV, %) values for an interday assay of ID2S, GALN, and ARSB were 9%, 18%, and 9%, respectively (n = 7). The average enzyme activities of ID2S, GALN, and ARSB in random neonates were 19.6 ± 5.8, 1.7 ± 0.7, and 13.4 ± 5.2 µmol/h/L (mean ± SD, n = 240), respectively. In contrast, the average enzyme activities of ID2S, GALN, and ARSB in disease-affected individuals were 0.5 ± 0.2 (n = 6), 0.3 ± 0.1 (n = 3), and 0.3 (n = 1) µmol/h/L, respectively. The representative analytical range values corresponding to ID2S, GALN, and ARSB were 39, 17, and 168, respectively. These results raise the possibility that the population of disease-affected individuals could be separated from that of healthy individuals using the LC-MS/MS-based technique.

SELECTION OF CITATIONS
SEARCH DETAIL