Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Struct Mol Biol ; 31(2): 275-282, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38177681

ABSTRACT

A wide range of de novo protein structure designs have been achieved, but the complexity of naturally occurring protein structures is still far beyond these designs. Here, to expand the diversity and complexity of de novo designed protein structures, we sought to develop a method for designing 'difficult-to-describe' α-helical protein structures composed of irregularly aligned α-helices like globins. Backbone structure libraries consisting of a myriad of α-helical structures with five or six helices were generated by combining 18 helix-loop-helix motifs and canonical α-helices, and five distinct topologies were selected for de novo design. The designs were found to be monomeric with high thermal stability in solution and fold into the target topologies with atomic accuracy. This study demonstrated that complicated α-helical proteins are created using typical building blocks. The method we developed will enable us to explore the universe of protein structures for designing novel functional proteins.


Subject(s)
Protein Folding , Proteins , Proteins/chemistry , Protein Structure, Secondary , Protein Conformation, alpha-Helical
2.
Nat Struct Mol Biol ; 30(8): 1132-1140, 2023 08.
Article in English | MEDLINE | ID: mdl-37400653

ABSTRACT

A fundamental question in protein evolution is whether nature has exhaustively sampled nearly all possible protein folds throughout evolution, or whether a large fraction of the possible folds remains unexplored. To address this question, we defined a set of rules for ß-sheet topology to predict novel αß-folds and carried out a systematic de novo protein design exploration of the novel αß-folds predicted by the rules. The designs for all eight of the predicted novel αß-folds with a four-stranded ß-sheet, including a knot-forming one, folded into structures close to the design models. Further, the rules predicted more than 10,000 novel αß-folds with five- to eight-stranded ß-sheets; this number far exceeds the number of αß-folds observed in nature so far. This result suggests that a vast number of αß-folds are possible, but have not emerged or have become extinct due to evolutionary bias.


Subject(s)
Protein Folding , Proteins , Protein Structure, Secondary , Proteins/chemistry , Protein Conformation, beta-Strand
3.
Proc Natl Acad Sci U S A ; 116(14): 6806-6811, 2019 04 02.
Article in English | MEDLINE | ID: mdl-30877249

ABSTRACT

The successful de novo design of proteins can provide insights into the physical chemical basis of stability, the role of evolution in constraining amino acid sequences, and the production of customizable platforms for engineering applications. Previous guanidine hydrochloride (GdnHCl; an ionic denaturant) experiments of a designed, naturally occurring ßα fold, Di-III_14, revealed a cooperative, two-state unfolding transition and a modest stability. Continuous-flow mixing experiments in our laboratory revealed a simple two-state reaction in the microsecond to millisecond time range and consistent with the thermodynamic results. In striking contrast, the protein remains folded up to 9.25 M in urea, a neutral denaturant, and hydrogen exchange (HDX) NMR analysis in water revealed the presence of numerous high-energy states that interconvert on a time scale greater than seconds. The complex protection pattern for HDX corresponds closely with a pair of electrostatic networks on the surface and an extensive network of hydrophobic side chains in the interior of the protein. Mutational analysis showed that electrostatic and hydrophobic networks contribute to the resistance to urea denaturation for the WT protein; remarkably, single charge reversals on the protein surface restore the expected urea sensitivity. The roughness of the energy surface reflects the densely packed hydrophobic core; the removal of only two methyl groups eliminates the high-energy states and creates a smooth surface. The design of a very stable ßα fold containing electrostatic and hydrophobic networks has created a complex energy surface rarely observed in natural proteins.


Subject(s)
Guanidine/chemistry , Protein Folding , Urea/chemistry , Hydrophobic and Hydrophilic Interactions , Nuclear Magnetic Resonance, Biomolecular , Protein Structure, Secondary , Static Electricity
4.
Proc Natl Acad Sci U S A ; 112(40): E5478-85, 2015 Oct 06.
Article in English | MEDLINE | ID: mdl-26396255

ABSTRACT

We recently described general principles for designing ideal protein structures stabilized by completely consistent local and nonlocal interactions. The principles relate secondary structure patterns to tertiary packing motifs and enable design of different protein topologies. To achieve fine control over protein shape and size within a particular topology, we have extended the design rules by systematically analyzing the codependencies between the lengths and packing geometry of successive secondary structure elements and the backbone torsion angles of the loop linking them. We demonstrate the control afforded by the resulting extended rule set by designing a series of proteins with the same fold but considerable variation in secondary structure length, loop geometry, ß-strand registry, and overall shape. Solution NMR structures of four designed proteins for two different folds show that protein shape and size can be precisely controlled within a given protein fold. These extended design principles provide the foundation for custom design of protein structures performing desired functions.


Subject(s)
Protein Folding , Protein Structure, Secondary , Protein Structure, Tertiary , Proteins/chemistry , Amino Acid Sequence , Computer-Aided Design , Crystallography, X-Ray , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Molecular Sequence Data , Phylogeny , Protein Engineering/methods , Proteins/classification , Proteins/genetics , Reproducibility of Results , Solutions
5.
Nature ; 491(7423): 222-7, 2012 Nov 08.
Article in English | MEDLINE | ID: mdl-23135467

ABSTRACT

Unlike random heteropolymers, natural proteins fold into unique ordered structures. Understanding how these are encoded in amino-acid sequences is complicated by energetically unfavourable non-ideal features--for example kinked α-helices, bulged ß-strands, strained loops and buried polar groups--that arise in proteins from evolutionary selection for biological function or from neutral drift. Here we describe an approach to designing ideal protein structures stabilized by completely consistent local and non-local interactions. The approach is based on a set of rules relating secondary structure patterns to protein tertiary motifs, which make possible the design of funnel-shaped protein folding energy landscapes leading into the target folded state. Guided by these rules, we designed sequences predicted to fold into ideal protein structures consisting of α-helices, ß-strands and minimal loops. Designs for five different topologies were found to be monomeric and very stable and to adopt structures in solution nearly identical to the computational models. These results illuminate how the folding funnels of natural proteins arise and provide the foundation for engineering a new generation of functional proteins free from natural evolution.


Subject(s)
Computer Simulation , Models, Molecular , Protein Folding , Protein Stability , Proteins/chemistry , Protein Structure, Secondary , Protein Structure, Tertiary , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...