Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Harmful Algae ; 118: 102314, 2022 10.
Article in English | MEDLINE | ID: mdl-36195429

ABSTRACT

Certain species within the genus Pseudo-nitzschia are able to produce the neurotoxin domoic acid (DA), which can cause illness in humans, mass-mortality of marine animals, and closure of commercial and recreational shellfisheries during toxic events. Understanding and forecasting blooms of these harmful species is a primary management goal. However, accurately predicting the onset and severity of bloom events remains difficult, in part because the underlying drivers of bloom formation have not been fully resolved. Furthermore, Pseudo-nitzschia species often co-occur, and recent work suggests that the genetic composition of a Pseudo-nitzschia bloom may be a better predictor of toxicity than prevailing environmental conditions. We developed a novel next-generation sequencing assay using restriction site-associated DNA (2b-RAD) genotyping and applied it to mock Pseudo-nitzschia communities generated by mixing cultures of different species in known abundances. On average, 94% of the variance in observed species abundance was explained by the expected abundance. In addition, the false positive rate was low (0.45% on average) and unrelated to read depth, and false negatives were never observed. Application of this method to environmental DNA samples collected during natural Pseudo-nitzschia spp. bloom events in Southern California revealed that increases in DA were associated with increases in the relative abundance of P. australis. Although the absolute correlation across time-points was weak, an independent species fingerprinting assay (Automated Ribosomal Intergenic Spacer Analysis) supported this and identified other potentially toxic species. Finally, we assessed population-level genomic variation by mining SNPs from the environmental 2bRAD dataset. Consistent shifts in allele frequencies in P. pungens and P. subpacifica were detected between high and low DA years, suggesting that different intraspecific variants may be associated with prevailing environmental conditions or the presence of DA. Taken together, this method presents a potentially cost-effective and high-throughput approach for studies aiming to evaluate both population and species dynamics in mixed samples.


Subject(s)
DNA, Environmental , Diatoms , Animals , Diatoms/genetics , Humans , Neurotoxins
2.
Toxins (Basel) ; 14(3)2022 03 16.
Article in English | MEDLINE | ID: mdl-35324710

ABSTRACT

Harmful algal blooms (HABs) and their toxins are a significant and continuing threat to aquatic life in freshwater, estuarine, and coastal water ecosystems. Scientific understanding of the impacts of HABs on aquatic ecosystems has been hampered, in part, by limitations in the methodologies to measure cyanotoxins in complex matrices. This literature review discusses the methodologies currently used to measure the most commonly found freshwater cyanotoxins and prymnesins in various matrices and to assess their advantages and limitations. Identifying and quantifying cyanotoxins in surface waters, fish tissue, organs, and other matrices are crucial for risk assessment and for ensuring quality of food and water for consumption and recreational uses. This paper also summarizes currently available tissue extraction, preparation, and detection methods mentioned in previous studies that have quantified toxins in complex matrices. The structural diversity and complexity of many cyanobacterial and algal metabolites further impede accurate quantitation and structural confirmation for various cyanotoxins. Liquid chromatography-triple quadrupole mass spectrometer (LC-MS/MS) to enhance the sensitivity and selectivity of toxin analysis has become an essential tool for cyanotoxin detection and can potentially be used for the concurrent analysis of multiple toxins.


Subject(s)
Cyanobacteria Toxins , Water , Animals , Chromatography, Liquid , Ecosystem , Fishes , Harmful Algal Bloom , Microcystins/analysis , Tandem Mass Spectrometry
3.
Harmful Algae ; 103: 102003, 2021 03.
Article in English | MEDLINE | ID: mdl-33980443

ABSTRACT

The contamination of coastal ecosystems from a variety of toxins of marine algal origin is a common and well-documented situation along the coasts of the United States and globally. The occurrence of toxins originating from cyanobacteria along marine coastlines is much less studied, and little information exists on whether toxins from marine and freshwater sources co-occur regularly. The current study focused on the discharge of cyanotoxins from a coastal lagoon (Santa Clara River Estuary) as a consequence of an extreme tide event (King Tides; December 3-5, 2017) resulting in a breach of the berm separating the lagoon from the ocean. Monthly monitoring in the lagoon throughout 2017 documented more than a dozen co-occurring cyanobacterial genera, as well as multiple algal and cyanobacterial toxins. Biotoxin monitoring before and following the King Tide event using Solid Phase Adsorption Toxin Tracking (SPATT) in the lagoon and along the coast revealed the co-occurrence of microcystins, anatoxin, domoic acid, and other toxins on multiple dates and locations. Domoic acid was ubiquitously present in SPATT deployed in the lagoon and along the coast. Microcystins were also commonly detected in both locations, although the beach berm retained the lagoonal water for much of the year. Mussels collected along the coast contained microcystins in approximately half the samples, particularly following the King Tide event. Anatoxin was observed in SPATT only in late December, following the breach of the berm. Our findings indicate both episodic and persistent occurrence of both cyanotoxins and marine toxins may commonly contaminate coastlines in proximity to cyanobacteria-laden creeks and lagoons.


Subject(s)
Cyanobacteria , Ecosystem , California , Environmental Monitoring , Rivers
4.
Toxicon ; 192: 1-14, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33428970

ABSTRACT

The global proliferation of toxin producing cyanobacterial blooms has been attributed to a wide variety of environmental factors with nutrient pollution, increased temperatures, and drought being three of the most significant. The current study is the first formal assessment of cyanotoxins in two impaired lakes, Canyon Lake and Lake Elsinore, in southern California that have a history of cyanobacterial blooms producing high biomass as measured by chl-a. Cyanotoxins in Lake Elsinore were detected at concentrations that persistently exceeded California recreational health thresholds, whereas Canyon Lake experienced persistent concentrations that only occasionally exceeded health thresholds. The study results are the highest recorded concentrations of microcystins, anatoxin-a, and cylindrospermopsin detected in southern California lakes. Concentrations exceeded health thresholds that caused both lakes to be closed for recreational activities. Cyanobacterial identifications indicated a high risk for the presence of potentially toxic genera and agreed with the cyanotoxin results that indicated frequent detection of multiple cyanotoxins simultaneously. A statistically significant correlation was observed between chlorophyll-a (chl-a) and microcystin concentrations for Lake Elsinore but not Canyon Lake, and chl-a was not a good indicator of cylindrospermopsin, anatoxin-a, or nodularin. Therefore, chl-a was not a viable screening indicator of cyanotoxin risk in these lakes. The study results indicate potential acute and chronic risk of exposure to cyanotoxins in these lakes and supports the need for future monitoring efforts to help minimize human and domestic pet exposure and to better understand potential effects to wildlife. The frequent co-occurrence of complex cyanotoxin mixtures further complicates the risk assessment process for these lakes given uncertainty in the toxicology of mixtures.


Subject(s)
Cyanobacteria , Bacterial Toxins/analysis , California , Environmental Monitoring , Lakes , Microcystins/analysis , Microcystins/toxicity
6.
Harmful Algae ; 79: 87-104, 2018 11.
Article in English | MEDLINE | ID: mdl-30420020

ABSTRACT

Blooms of the marine diatom genus Pseudo-nitzschia that produce the neurotoxin domoic acid have been documented with regularity along the coast of southern California since 2003, with the occurrence of the toxin in shellfish tissue predating information on domoic acid in the particulate fraction in this region. Domoic acid concentrations in the phytoplankton inhabiting waters off southern California during 2003, 2006, 2007, 2011 and 2017 were comparable to some of the highest values that have been recorded in the literature. Blooms of Pseudo-nitzschia have exhibited strong seasonality, with toxin appearing predominantly in the spring. Year-to-year variability of particulate toxin has been considerable, and observations during 2003, 2006, 2007, 2011 and again in 2017 linked domoic acid in the diets of marine mammals and seabirds to mass mortality events among these animals. This work reviews information collected during the past 15 years documenting the phenology and magnitude of Pseudo-nitzschia abundances and domoic acid within the Southern California Bight. The general oceanographic factors leading to blooms of Pseudo-nitzschia and outbreaks of domoic acid in this region are clear, but subtle factors controlling spatial and interannual variability in bloom magnitude and toxin production remain elusive.


Subject(s)
Diatoms/metabolism , Harmful Algal Bloom , Kainic Acid/analogs & derivatives , California , Kainic Acid/metabolism , Phytoplankton , Seasons , Seawater , Shellfish
7.
PLoS One ; 13(2): e0192439, 2018.
Article in English | MEDLINE | ID: mdl-29438384

ABSTRACT

Ochromonas spp. strains CCMP1393 and BG-1 are phagotrophic phytoflagellates with different nutritional strategies. Strain CCMP1393 is an obligate phototroph while strain BG-1 readily grows in continuous darkness in the presence of bacterial prey. Growth and gene expression of strain CCMP1393 were investigated under conditions allowing phagotrophic, mixotrophic, or phototrophic nutrition. The availability of light and bacterial prey led to the differential expression of 42% or 45-59% of all genes, respectively. Data from strain CCMP1393 were compared to those from a study conducted previously on strain BG-1, and revealed notable differences in carbon and nitrogen metabolism between the 2 congeners under similar environmental conditions. Strain BG-1 utilized bacterial carbon and amino acids through glycolysis and the tricarboxylic acid cycle, while downregulating light harvesting and carbon fixation in the Calvin cycle when both light and bacteria were available. In contrast, the upregulation of genes related to photosynthesis, light harvesting, chlorophyll synthesis, and carbon fixation in the presence of light and prey for strain CCMP1393 implied that this species is more phototrophic than strain BG-1, and that phagotrophy may have enhanced phototrophy. Cellular chlorophyll a content was also significantly higher in strain CCMP1393 supplied with bacteria compared to those without prey. Our results thus point to very different physiological strategies for mixotrophic nutrition in these closely related chrysophyte species.


Subject(s)
Gene Expression , Ochromonas/metabolism , Amino Acids/metabolism , Bacteria , Carbon/metabolism , Chlorophyll/metabolism , Chlorophyll A , Citric Acid Cycle , Glycolysis , Light , Nitrogen/metabolism , Ochromonas/genetics , Ochromonas/physiology , Phylogeny , Transcriptome
8.
Harmful Algae ; 67: 36-43, 2017 07.
Article in English | MEDLINE | ID: mdl-28755719

ABSTRACT

The toxic diatom genus Pseudo-nitzschia produces environmentally damaging harmful algal blooms (HABs) along the U.S. west coast and elsewhere, and a recent ocean warming event coincided with toxic blooms of record extent. This study examined the effects of temperature on growth, domoic acid toxin production, and competitive dominance of two Pseudo-nitzschia species from Southern California. Growth rates of cultured P. australis were maximal at 23°C (∼0.8d-1), similar to the maximum temperature recorded during the 2014-2015 warming anomaly, and decreased to ∼0.1 d-1 by 30°C. In contrast, cellular domoic acid concentrations only became detectable at 23°C, and increased to maximum levels at 30°C. In two incubation experiments using natural Southern California phytoplankton communities, warming also increased the relative abundance of another potentially toxic local species, P. delicatissima. These results suggest that both the toxicity and the competitive success of particular Pseudo-nitzschia spp. can be positively correlated with temperature, and therefore there is a need to determine whether harmful blooms of this diatom genus may be increasingly prevalent in a warmer future coastal ocean.


Subject(s)
Diatoms/growth & development , Global Warming , Harmful Algal Bloom , Seawater , California , Cells, Cultured , Diatoms/metabolism , Kainic Acid/analogs & derivatives , Kainic Acid/metabolism , Photosynthesis , Phytoplankton/metabolism
9.
Toxins (Basel) ; 9(3)2017 03 09.
Article in English | MEDLINE | ID: mdl-28282935

ABSTRACT

Blooms of toxic cyanobacteria in freshwater ecosystems have received considerable attention in recent years, but their occurrence and potential importance at the land-sea interface has not been widely recognized. Here we present the results of a survey of discrete samples conducted in more than fifty brackish water sites along the coastline of southern California. Our objectives were to characterize cyanobacterial community composition and determine if specific groups of cyanotoxins (anatoxins, cylindrospermopsins, microcystins, nodularins, and saxitoxins) were present. We report the identification of numerous potentially harmful taxa and the co-occurrence of multiple toxins, previously undocumented, at several locations. Our findings reveal a potential health concern based on the range of organisms present and the widespread prevalence of recognized toxic compounds. Our results raise concerns for recreation, harvesting of finfish and shellfish, and wildlife and desalination operations, highlighting the need for assessments and implementation of monitoring programs. Such programs appear to be particularly necessary in regions susceptible to urban influence.


Subject(s)
Cyanobacteria , Marine Toxins/analysis , Water Pollutants/analysis , California , Environmental Monitoring , Estuaries
10.
BMC Genomics ; 18(1): 163, 2017 02 14.
Article in English | MEDLINE | ID: mdl-28196482

ABSTRACT

BACKGROUND: Ochromonas is a genus of mixotrophic chrysophytes that is found ubiquitously in many aquatic environments. Species in this genus can be important consumers of bacteria but vary in their ability to perform photosynthesis. We studied the effect of light and bacteria on growth and gene expression of a predominantly phagotrophic Ochromonas species. Axenic cultures of Ochromonas sp. were fed with heat-killed bacteria (HKB) and grown in constant light or darkness. RNA was extracted from cultures in the light or in the dark with HKB present (Light + HKB; Dark + HKB), and in the light after HKB were depleted (Light + depleted HKB). RESULTS: There were no significant differences in the growth or bacterial ingestion rates between algae grown in light or dark conditions. The availability of light led to a differential expression of only 8% of genes in the transcriptome. A number of genes associated with photosynthesis, phagotrophy, and tetrapyrrole synthesis was upregulated in the Light + HKB treatment compared to Dark + HKB. Conversely, the comparison between the Light + HKB and Light + depleted HKB treatments revealed that the presence of HKB led to differential expression of 59% of genes, including the majority of genes involved in major carbon and nitrogen metabolic pathways. Genes coding for unidirectional enzymes for the utilization of glucose were upregulated in the presence of HKB, implying increased glycolytic activities during phagotrophy. Algae without HKB upregulated their expression of genes coding for ammonium transporters, implying uptake of inorganic nitrogen from the culture medium when prey were unavailable. CONCLUSIONS: Transcriptomic results agreed with previous observations that light had minimal effect on the population growth of Ochromonas sp. However, light led to the upregulation of a number of phototrophy- and phagotrophy-related genes, while the availability of bacterial prey led to prominent changes in major carbon and nitrogen metabolic pathways. Our study demonstrated the potential of transcriptomic approaches to improve our understanding of the trophic physiologies of complex mixotrophs, and revealed responses in Ochromonas sp. not apparent from traditional culture studies.


Subject(s)
Gene Expression Regulation , Ochromonas/genetics , Photosynthesis/genetics , Carbon/metabolism , Energy Metabolism/genetics , Gene Expression Profiling , Gene Expression Regulation/radiation effects , Light , Nitrogen/metabolism , Ochromonas/metabolism , Transcriptome
11.
ISME J ; 11(5): 1282-1285, 2017 05.
Article in English | MEDLINE | ID: mdl-28060364

ABSTRACT

Single-cell transcriptomics is an emerging research tool that has huge untapped potential in the study of microbial eukaryotes. Its application has been tested in microbial eukaryotes 50 µm or larger, and it generated transcriptomes similar to those obtained from culture-based RNA-seq. However, microbial eukaryotes have a wide range of sizes and can be as small as 1 µm. Single-cell RNA-seq was tested in two smaller protists (8 and 15 µm). Transcript recovery rate was much lower and randomness in observed gene expression levels was much higher in single-cell transcriptomes than those derived from bulk cultures of cells. We found that the reason of such observation is that the smaller organisms had much lower mRNA copy numbers. We discuss the application of single-cell RNA-seq in studying smaller microbial eukaryotes in the context of these limitations.


Subject(s)
Dinoflagellida/genetics , Gene Expression Profiling , Haptophyta/genetics , Dinoflagellida/metabolism , Haptophyta/metabolism , RNA, Messenger/metabolism , Sequence Analysis, RNA , Single-Cell Analysis , Transcriptome
12.
PLoS One ; 10(5): e0123945, 2015.
Article in English | MEDLINE | ID: mdl-25970340

ABSTRACT

The unabated rise in anthropogenic CO2 emissions is predicted to strongly influence the ocean's environment, increasing the mean sea-surface temperature by 4°C and causing a pH decline of 0.3 units by the year 2100. These changes are likely to affect the nutritional value of marine food sources since temperature and CO2 can influence the fatty (FA) and amino acid (AA) composition of marine primary producers. Here, essential amino (EA) and polyunsaturated fatty (PUFA) acids are of particular importance due to their nutritional value to higher trophic levels. In order to determine the interactive effects of CO2 and temperature on the nutritional quality of a primary producer, we analyzed the relative PUFA and EA composition of the diatom Cylindrotheca fusiformis cultured under a factorial matrix of 2 temperatures (14 and 19°C) and 3 partial pressures of CO2 (180, 380, 750 µatm) for >250 generations. Our results show a decay of ~3% and ~6% in PUFA and EA content in algae kept at a pCO2 of 750 µatm (high) compared to the 380 µatm (intermediate) CO2 treatments at 14°C. Cultures kept at 19°C displayed a ~3% lower PUFA content under high compared to intermediate pCO2, while EA did not show differences between treatments. Algae grown at a pCO2 of 180 µatm (low) had a lower PUFA and AA content in relation to those at intermediate and high CO2 levels at 14°C, but there were no differences in EA at 19°C for any CO2 treatment. This study is the first to report adverse effects of warming and acidification on the EA of a primary producer, and corroborates previous observations of negative effects of these stressors on PUFA. Considering that only ~20% of essential biomolecules such as PUFA (and possibly EA) are incorporated into new biomass at the next trophic level, the potential impacts of adverse effects of ocean warming and acidification at the base of the food web may be amplified towards higher trophic levels, which rely on them as source of essential biomolecules.


Subject(s)
Amino Acids/biosynthesis , Carbon Dioxide/pharmacology , Diatoms/drug effects , Fatty Acids, Unsaturated/biosynthesis , Diatoms/growth & development , Diatoms/metabolism , Ecosystem , Fatty Acids, Unsaturated/antagonists & inhibitors , Food Chain , Hydrogen-Ion Concentration , Principal Component Analysis , Seawater/chemistry , Temperature
13.
Philos Trans R Soc Lond B Biol Sci ; 368(1627): 20120437, 2013.
Article in English | MEDLINE | ID: mdl-23980240

ABSTRACT

Ocean acidification and greenhouse warming will interactively influence competitive success of key phytoplankton groups such as diatoms, but how long-term responses to global change will affect community structure is unknown. We incubated a mixed natural diatom community from coastal New Zealand waters in a short-term (two-week) incubation experiment using a factorial matrix of warming and/or elevated pCO2 and measured effects on community structure. We then isolated the dominant diatoms in clonal cultures and conditioned them for 1 year under the same temperature and pCO2 conditions from which they were isolated, in order to allow for extended selection or acclimation by these abiotic environmental change factors in the absence of interspecific interactions. These conditioned isolates were then recombined into 'artificial' communities modelled after the original natural assemblage and allowed to compete under conditions identical to those in the short-term natural community experiment. In general, the resulting structure of both the unconditioned natural community and conditioned 'artificial' community experiments was similar, despite differences such as the loss of two species in the latter. pCO2 and temperature had both individual and interactive effects on community structure, but temperature was more influential, as warming significantly reduced species richness. In this case, our short-term manipulative experiment with a mixed natural assemblage spanning weeks served as a reasonable proxy to predict the effects of global change forcing on diatom community structure after the component species were conditioned in isolation over an extended timescale. Future studies will be required to assess whether or not this is also the case for other types of algal communities from other marine regimes.


Subject(s)
Acclimatization/physiology , Biota/physiology , Diatoms/physiology , Global Warming , Phytoplankton/physiology , Seawater/chemistry , Analysis of Variance , Carbon Dioxide/metabolism , Hydrogen-Ion Concentration , New Zealand , Pacific Ocean , Species Specificity , Temperature
14.
Evolution ; 67(7): 1879-91, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23815646

ABSTRACT

Increasing pCO2 (partial pressure of CO2 ) in an "acidified" ocean will affect phytoplankton community structure, but manipulation experiments with assemblages briefly acclimated to simulated future conditions may not accurately predict the long-term evolutionary shifts that could affect inter-specific competitive success. We assessed community structure changes in a natural mixed dinoflagellate bloom incubated at three pCO2 levels (230, 433, and 765 ppm) in a short-term experiment (2 weeks). The four dominant species were then isolated from each treatment into clonal cultures, and maintained at all three pCO2 levels for approximately 1 year. Periodically (4, 8, and 12 months), these pCO2 -conditioned clones were recombined into artificial communities, and allowed to compete at their conditioning pCO2 level or at higher and lower levels. The dominant species in these artificial communities of CO2 -conditioned clones differed from those in the original short-term experiment, but individual species relative abundance trends across pCO2 treatments were often similar. Specific growth rates showed no strong evidence for fitness increases attributable to conditioning pCO2 level. Although pCO2 significantly structured our experimental communities, conditioning time and biotic interactions like mixotrophy also had major roles in determining competitive outcomes. New methods of carrying out extended mixed species experiments are needed to accurately predict future long-term phytoplankton community responses to changing pCO2 .


Subject(s)
Carbon Dioxide/metabolism , Dinoflagellida/growth & development , Dinoflagellida/metabolism , Ecosystem , Phytoplankton/metabolism , Dinoflagellida/classification , Phytoplankton/classification , Phytoplankton/growth & development
15.
PLoS One ; 7(2): e32116, 2012.
Article in English | MEDLINE | ID: mdl-22363805

ABSTRACT

Anthropogenic CO(2) is progressively acidifying the ocean, but the responses of harmful algal bloom species that produce toxins that can bioaccumulate remain virtually unknown. The neurotoxin domoic acid is produced by the globally-distributed diatom genus Pseudo-nitzschia. This toxin is responsible for amnesic shellfish poisoning, which can result in illness or death in humans and regularly causes mass mortalities of marine mammals and birds. Domoic acid production by Pseudo-nitzschia cells is known to be regulated by nutrient availability, but potential interactions with increasing seawater CO(2) concentrations are poorly understood. Here we present experiments measuring domoic acid production by acclimatized cultures of Pseudo-nitzschia fraudulenta that demonstrate a strong synergism between projected future CO(2) levels (765 ppm) and silicate-limited growth, which greatly increases cellular toxicity relative to growth under modern atmospheric (360 ppm) or pre-industrial (200 ppm) CO(2) conditions. Cellular Si:C ratios decrease with increasing CO(2), in a trend opposite to that seen for domoic acid production. The coastal California upwelling system where this species was isolated currently exhibits rapidly increasing levels of anthropogenic acidification, as well as widespread episodic silicate limitation of diatom growth. Our results suggest that the current ecosystem and human health impacts of toxic Pseudo-nitzschia blooms could be greatly exacerbated by future ocean acidification and 'carbon fertilization' of the coastal ocean.


Subject(s)
Carbon Dioxide/pharmacology , Diatoms/chemistry , Diatoms/drug effects , Kainic Acid/analogs & derivatives , Silicates/pharmacology , Carbon/analysis , Diatoms/cytology , Diatoms/growth & development , Humans , Hydrogen-Ion Concentration/drug effects , Kainic Acid/toxicity , Nitrogen/analysis , Particulate Matter/analysis
16.
J Nat Prod ; 73(8): 1360-5, 2010 Aug 27.
Article in English | MEDLINE | ID: mdl-20795740

ABSTRACT

The karlotoxins are a family of amphidinol-like compounds that play roles in avoiding predation and in prey capture for the toxic dinoflagellate Karlodinium veneficum. The first member of the toxin group to be reported was KmTx 1 (1), and here we report an additional five new members of this family (3-7) from the same strain. Of these additional compounds, KmTx 3 (3) differs from KmTx 1 (1) in having one less methylene group in the saturated portion of its lipophilic arm. In addition, 64-E-chloro-KmTx 3 (4) and 10-O-sulfo-KmTx 3 (5) were identified. Likewise, 65-E-chloro-KmTx 1 (6) and 10-O-sulfo-KmTx 1 (7) were also isolated. Comparison of the hemolytic activities of the newly isolated compounds to that of KmTx 1 shows that potency correlates positively with the length of the lipophilic arm and is disrupted by sulfonation of the polyol arm.


Subject(s)
Dinoflagellida/chemistry , Hemolytic Agents/isolation & purification , Hemolytic Agents/pharmacology , Macrolides/isolation & purification , Macrolides/pharmacology , Marine Toxins/isolation & purification , Marine Toxins/pharmacology , Polyenes/isolation & purification , Polyenes/pharmacology , Pyrans/isolation & purification , Pyrans/pharmacology , Erythrocytes/drug effects , Hemolytic Agents/chemistry , Humans , Macrolides/chemistry , Marine Toxins/chemistry , Molecular Structure , Nuclear Magnetic Resonance, Biomolecular , Polyenes/chemistry , Polyketides , Pyrans/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...