Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
PLoS One ; 19(1): e0293014, 2024.
Article in English | MEDLINE | ID: mdl-38232109

ABSTRACT

Data from the marriage of paleomagnetism and archaeology (archaeomagnetism) are the backbone of attempts to create geomagnetic field models for ancient times. Paleointensity experimental design has been the focus of intensive efforts and the requirements and shortcomings are increasingly well understood. Some archaeological materials have excellent age control from inscriptions, which can be tied to a given decade or even a specific year in some cases. In this study, we analyzed fired mud bricks used for the construction of the Ishtar Gate, the entrance complex to the ancient city of Babylon in Southern Mesopotamia. We were able to extract reliable intensity data from all three phases of the gate, the earliest of which includes bricks inscribed with the name of King Nebuchadnezzar II (605 to 562 BCE). These results (1) add high quality intensity data to a region relatively unexplored so far (Southern Mesopotamia), (2) contribute to a better understanding of paleosecular variation in this region, and the development of an archaeomagnetic dating reference for one of the key regions in the history of human civilizations; (3) demonstrate the potential of inscribed bricks (glazed and unglazed), a common material in ancient Mesopotamia, to archaeomagnetic studies; and (4) suggest that the gate complex was constructed some time after the Babylonian conquest of Jerusalem, and that there were no substantial chronological gaps in the construction of each consecutive phase. The best fit of our data (averaging 136±2.1 ZAm2) with those of the reference curve (the Levantine Archaeomagnetic Curve) is 569 BCE.


Subject(s)
Archaeology , Civilization , Humans , Archaeology/methods , Mesopotamia
2.
Proc Natl Acad Sci U S A ; 120(52): e2313361120, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38109546

ABSTRACT

This study presents 32 high-resolution geomagnetic intensity data points from Mesopotamia, spanning the 3rd to the 1st millennia BCE. These data contribute to rectifying geographic disparities in the resolution of the global archaeointensity curve that have hampered our understanding of geomagnetic field dynamics and the viability of applying archaeomagnetism as a method of absolute dating of archaeological objects. A lack of precise and well-dated intensity data in the region has also limited our ability to identify short-term fluctuations in the geomagnetic field, such as the Levantine Iron Age geomagnetic Anomaly (LIAA), a period of high field intensity from ca. 1050 to 550 BCE. This phenomenon has hitherto not been well-demonstrated in Mesopotamia, contrary to predictions from regional geomagnetic models. To address these issues, this study presents precise archaeomagnetic results from 32 inscribed baked bricks, tightly dated to the reigns of 12 Mesopotamian kings through interpretation of their inscriptions. Results confirm the presence of the high field values of the LIAA in Mesopotamia during the first millennium BCE and drastically increase the resolution of the archaeointensity curve for the 3rd-1st millennia BCE. This research establishes a baseline for the use of archaeomagnetic analysis as an absolute dating technique for archaeological materials from Mesopotamia.

3.
Nat Commun ; 13(1): 5787, 2022 10 02.
Article in English | MEDLINE | ID: mdl-36184671

ABSTRACT

Antarctica is one of the most vulnerable regions to climate change on Earth and studying the past and present responses of this polar marine ecosystem to environmental change is a matter of urgency. Sedimentary ancient DNA (sedaDNA) analysis can provide such insights into past ecosystem-wide changes. Here we present authenticated (through extensive contamination control and sedaDNA damage analysis) metagenomic marine eukaryote sedaDNA from the Scotia Sea region acquired during IODP Expedition 382. We also provide a marine eukaryote sedaDNA record of ~1 Mio. years and diatom and chlorophyte sedaDNA dating back to ~540 ka (using taxonomic marker genes SSU, LSU, psbO). We find evidence of warm phases being associated with high relative diatom abundance, and a marked transition from diatoms comprising <10% of all eukaryotes prior to ~14.5 ka, to ~50% after this time, i.e., following Meltwater Pulse 1A, alongside a composition change from sea-ice to open-ocean species. Our study demonstrates that sedaDNA tools can be expanded to hundreds of thousands of years, opening the pathway to the study of ecosystem-wide marine shifts and paleo-productivity phases throughout multiple glacial-interglacial cycles.


Subject(s)
Diatoms , Antarctic Regions , DNA, Ancient , Diatoms/genetics , Ecosystem , Eukaryota , Geologic Sediments
4.
Paleoceanogr Paleoclimatol ; 37(7): e2022PA004433, 2022 Jul.
Article in English | MEDLINE | ID: mdl-36247355

ABSTRACT

Ice loss in the Southern Hemisphere has been greatest over the past 30 years in West Antarctica. The high sensitivity of this region to climate change has motivated geologists to examine marine sedimentary records for evidence of past episodes of West Antarctic Ice Sheet (WAIS) instability. Sediments accumulating in the Scotia Sea are useful to examine for this purpose because they receive iceberg-rafted debris (IBRD) sourced from the Pacific- and Atlantic-facing sectors of West Antarctica. Here we report on the sedimentology and provenance of the oldest of three cm-scale coarse-grained layers recovered from this sea at International Ocean Discovery Program Site U1538. These layers are preserved in opal-rich sediments deposited ∼1.2 Ma during a relatively warm regional climate. Our microCT-based analysis of the layer's in-situ fabric confirms its ice-rafted origin. We further infer that it is the product of an intense but short-lived episode of IBRD deposition. Based on the petrography of its sand fraction and the Phanerozoic 40Ar/39Ar ages of hornblende and mica it contains, we conclude that the IBRD it contains was likely sourced from the Weddell Sea and/or Amundsen Sea embayment(s) of West Antarctica. We attribute the high concentrations of IBRD in these layers to "dirty" icebergs calved from the WAIS following its retreat inland from its modern grounding line. These layers also sit at the top of a ∼366-m thick Pliocene and early Pleistocene sequence that is much more dropstone-rich than its overlying sediments. We speculate this fact may reflect that WAIS mass-balance was highly dynamic during the ∼41-kyr (inter)glacial world.

5.
Nat Commun ; 13(1): 2044, 2022 04 19.
Article in English | MEDLINE | ID: mdl-35440628

ABSTRACT

The Southern Ocean paleoceanography provides key insights into how iron fertilization and oceanic productivity developed through Pleistocene ice-ages and their role in influencing the carbon cycle. We report a high-resolution record of dust deposition and ocean productivity for the Antarctic Zone, close to the main dust source, Patagonia. Our deep-ocean records cover the last 1.5 Ma, thus doubling that from Antarctic ice-cores. We find a 5 to 15-fold increase in dust deposition during glacials and a 2 to 5-fold increase in biogenic silica deposition, reflecting higher ocean productivity during interglacials. This antiphasing persisted throughout the last 25 glacial cycles. Dust deposition became more pronounced across the Mid-Pleistocene Transition (MPT) in the Southern Hemisphere, with an abrupt shift suggesting more severe glaciations since ~0.9 Ma. Productivity was intermediate pre-MPT, lowest during the MPT and highest since 0.4 Ma. Generally, glacials experienced extended sea-ice cover, reduced bottom-water export and Weddell Gyre dynamics, which helped lower atmospheric CO2 levels.


Subject(s)
Dust , Seawater , Antarctic Regions , Atmosphere , Dust/analysis , Oceans and Seas
6.
Proc Natl Acad Sci U S A ; 118(34)2021 08 24.
Article in English | MEDLINE | ID: mdl-34400499

ABSTRACT

Constraining secular variation of the Earth's magnetic field strength in the past is fundamental to understanding short-term processes of the geodynamo. Such records also constitute a powerful and independent dating tool for archaeological sites and geological formations. In this study, we present 11 robust archaeointensity results from Pre-Pottery to Pottery Neolithic Jordan that are based on both clay and flint (chert) artifacts. Two of these results constitute the oldest archaeointensity data for the entire Levant, ancient Egypt, Turkey, and Mesopotamia, extending the archaeomagnetic reference curve for the Holocene. Virtual Axial Dipole Moments (VADMs) show that the Earth's magnetic field in the Southern Levant was weak (about two-thirds the present field) at around 7600 BCE, recovering its strength to greater than the present field around 7000 BCE, and gradually weakening again around 5200 BCE. In addition, successful results obtained from burnt flint demonstrate the potential of this very common, and yet rarely used, material in archaeomagnetic research, in particular for prehistoric periods from the first use of fire to the invention of pottery.

7.
Proc Natl Acad Sci U S A ; 118(11)2021 03 16.
Article in English | MEDLINE | ID: mdl-33836599

ABSTRACT

Extensive spatial and temporal distribution of high-quality data are essential for understanding regional and global behaviors of the geomagnetic field. We carried out chronological and archaeomagnetic studies at the Angkor-era iron-smelting site of Tonle Bak in Cambodia in Southeast Asia, an area with no data available to date. We recovered high-fidelity full-vector geomagnetic information from the 11th to 14th century for this region, which fill gaps in the global distribution of data and will significantly improve the global models. These results reveal a sharp directional change of the geomagnetic field between 1200 and 1300 CE, accompanied by an intensity dip between 1100 and 1300 CE. The fast geomagnetic variation recorded by our data provides evidence for the possible existence of low-latitude flux expulsion. Related discussions in this paper will inspire a new focus on detailed geomagnetic research in low-latitude areas around the equator, and exploration of related dynamic processes.

8.
Proc Natl Acad Sci U S A ; 116(6): 1984-1991, 2019 02 05.
Article in English | MEDLINE | ID: mdl-30670651

ABSTRACT

Paleomagnetic observations provide valuable evidence of the strength of magnetic fields present during evolution of the Solar System. Such information provides important constraints on physical processes responsible for rapid accretion of the protoplanetesimal disk. For this purpose, magnetic recordings must be stable and resist magnetic overprints from thermal events and viscous acquisition over many billions of years. A lack of comprehensive understanding of magnetic domain structures carrying remanence has, until now, prevented accurate estimates of the uncertainty of recording fidelity in almost all paleomagnetic samples. Recent computational advances allow detailed analysis of magnetic domain structures in iron particles as a function of grain morphology, size, and temperature. Our results show that uniformly magnetized equidimensional iron particles do not provide stable recordings, but instead larger grains containing single-vortex domain structures have very large remanences and high thermal stability-both increasing rapidly with grain size. We derive curves relating magnetic thermal and temporal stability demonstrating that cubes (>35 nm) and spheres (>55 nm) are likely capable of preserving magnetic recordings from the formation of the Solar System. Additionally, we model paleomagnetic demagnetization curves for a variety of grain size distributions and find that unless a sample is dominated by grains at the superparamagnetic size boundary, the majority of remanence will block at high temperatures ([Formula: see text]C of Curie point). We conclude that iron and kamacite (low Ni content FeNi) particles are almost ideal natural recorders, assuming that there is no chemical or magnetic alteration during sampling, storage, or laboratory measurement.

9.
Proc Natl Acad Sci U S A ; 114(9): 2160-2165, 2017 02 28.
Article in English | MEDLINE | ID: mdl-28193874

ABSTRACT

Earth's magnetic field, one of the most enigmatic physical phenomena of the planet, is constantly changing on various time scales, from decades to millennia and longer. The reconstruction of geomagnetic field behavior in periods predating direct observations with modern instrumentation is based on geological and archaeological materials and has the twin challenges of (i) the accuracy of ancient paleomagnetic estimates and (ii) the dating of the archaeological material. Here we address the latter by using a set of storage jar handles (fired clay) stamped by royal seals as part of the ancient administrative system in Judah (Jerusalem and its vicinity). The typology of the stamp impressions, which corresponds to changes in the political entities ruling this area, provides excellent age constraints for the firing event of these artifacts. Together with rigorous paleomagnetic experimental procedures, this study yielded an unparalleled record of the geomagnetic field intensity during the eighth to second centuries BCE. The new record constitutes a substantial advance in our knowledge of past geomagnetic field variations in the southern Levant. Although it demonstrates a relatively stable and gradually declining field during the sixth to second centuries BCE, the new record provides further support for a short interval of extreme high values during the late eighth century BCE. The rate of change during this "geomagnetic spike" [defined as virtual axial dipole moment > 160 ZAm2 (1021 Am2)] is further constrained by the new data, which indicate an extremely rapid weakening of the field (losing ∼27% of its strength over ca. 30 y).

10.
Proc Natl Acad Sci U S A ; 114(1): 39-44, 2017 01 03.
Article in English | MEDLINE | ID: mdl-27980031

ABSTRACT

Variations of the Earth's geomagnetic field during the Holocene are important for understanding centennial to millennial-scale processes of the Earth's deep interior and have enormous potential implications for chronological correlations (e.g., comparisons between different sedimentary recording sequences, archaeomagnetic dating). Here, we present 21 robust archaeointensity data points from eastern China spanning the past ∼6 kyr. These results add significantly to the published data both regionally and globally. Taking together, we establish an archaeointensity reference curve for Eastern Asia, which can be used for archaeomagnetic dating in this region. Virtual axial dipole moments (VADMs) of the data range from a Holocene-wide low of ∼27 to "spike" values of ∼166 ZAm2 (Z: 1021). The results, in conjunction with our recently published data, confirm the existence of a decrease in paleointensity (DIP) in China around ∼2200 BCE. These low intensities are the lowest ever found for the Holocene and have not been reported outside of China. We also report a spike intensity of 165.8 ± 6.0 ZAm2 at ∼1300 BCE (±300 y), which is either a prelude to or the same event (within age uncertainties) as spikes first reported in the Levant.

11.
Proc Natl Acad Sci U S A ; 112(36): 11187-92, 2015 Sep 08.
Article in English | MEDLINE | ID: mdl-26305946

ABSTRACT

Data on the past intensity of Earth's magnetic field (paleointensity) are essential for understanding Earth's deep interior, climatic modeling, and geochronology applications, among other items. Here we demonstrate the possibility that much of available paleointensity data could be biased by instability of thermoremanent magnetization (TRM) associated with non-single-domain (SD) particles. Paleointensity data are derived from experiments in which an ancient TRM, acquired in an unknown field, is replaced by a laboratory-controlled TRM. This procedure is built on the assumption that the process of ancient TRM acquisition is entirely reproducible in the laboratory. Here we show experimental results violating this assumption in a manner not expected from standard theory. We show that the demagnetization-remagnetization relationship of non-SD specimens that were kept in a controlled field for only 2 y show a small but systematic bias relative to sister specimens that were given a fresh TRM. This effect, likely caused by irreversible changes in micromagnetic structures, leads to a bias in paleointensity estimates.

12.
Proc Natl Acad Sci U S A ; 110(24): 9645-50, 2013 Jun 11.
Article in English | MEDLINE | ID: mdl-23720311

ABSTRACT

The warmest global temperatures of the past 85 million years occurred during a prolonged greenhouse episode known as the Early Eocene Climatic Optimum (52-50 Ma). The Early Eocene Climatic Optimum terminated with a long-term cooling trend that culminated in continental-scale glaciation of Antarctica from 34 Ma onward. Whereas early studies attributed the Eocene transition from greenhouse to icehouse climates to the tectonic opening of Southern Ocean gateways, more recent investigations invoked a dominant role of declining atmospheric greenhouse gas concentrations (e.g., CO2). However, the scarcity of field data has prevented empirical evaluation of these hypotheses. We present marine microfossil and organic geochemical records spanning the early-to-middle Eocene transition from the Wilkes Land Margin, East Antarctica. Dinoflagellate biogeography and sea surface temperature paleothermometry reveal that the earliest throughflow of a westbound Antarctic Counter Current began ~49-50 Ma through a southern opening of the Tasmanian Gateway. This early opening occurs in conjunction with the simultaneous onset of regional surface water and continental cooling (2-4 °C), evidenced by biomarker- and pollen-based paleothermometry. We interpret that the westbound flowing current flow across the Tasmanian Gateway resulted in cooling of Antarctic surface waters and coasts, which was conveyed to global intermediate waters through invigorated deep convection in southern high latitudes. Although atmospheric CO2 forcing alone would provide a more uniform middle Eocene cooling, the opening of the Tasmanian Gateway better explains Southern Ocean surface water and global deep ocean cooling in the apparent absence of (sub-) equatorial cooling.


Subject(s)
Carbon Dioxide/metabolism , Climate , Cold Temperature , Greenhouse Effect , Antarctic Regions , Atmosphere , Dinoflagellida/growth & development , Fossils , Geography , Geologic Sediments/chemistry , Ice Cover , Marine Biology , Oceans and Seas , Plankton/growth & development , Tasmania , Time Factors , Water Movements
13.
Science ; 340(6130): 341-4, 2013 Apr 19.
Article in English | MEDLINE | ID: mdl-23599491

ABSTRACT

The circum-Antarctic Southern Ocean is an important region for global marine food webs and carbon cycling because of sea-ice formation and its unique plankton ecosystem. However, the mechanisms underlying the installation of this distinct ecosystem and the geological timing of its development remain unknown. Here, we show, on the basis of fossil marine dinoflagellate cyst records, that a major restructuring of the Southern Ocean plankton ecosystem occurred abruptly and concomitant with the first major Antarctic glaciation in the earliest Oligocene (~33.6 million years ago). This turnover marks a regime shift in zooplankton-phytoplankton interactions and community structure, which indicates the appearance of eutrophic and seasonally productive environments on the Antarctic margin. We conclude that earliest Oligocene cooling, ice-sheet expansion, and subsequent sea-ice formation were important drivers of biotic evolution in the Southern Ocean.


Subject(s)
Adaptation, Physiological , Dinoflagellida/physiology , Ecosystem , Ice Cover , Oceans and Seas , Phytoplankton/physiology , Zooplankton/physiology , Animals , Antarctic Regions , Cold Temperature , Fossils
14.
Nature ; 488(7409): 73-7, 2012 Aug 02.
Article in English | MEDLINE | ID: mdl-22859204

ABSTRACT

The warmest global climates of the past 65 million years occurred during the early Eocene epoch (about 55 to 48 million years ago), when the Equator-to-pole temperature gradients were much smaller than today and atmospheric carbon dioxide levels were in excess of one thousand parts per million by volume. Recently the early Eocene has received considerable interest because it may provide insight into the response of Earth's climate and biosphere to the high atmospheric carbon dioxide levels that are expected in the near future as a consequence of unabated anthropogenic carbon emissions. Climatic conditions of the early Eocene 'greenhouse world', however, are poorly constrained in critical regions, particularly Antarctica. Here we present a well-dated record of early Eocene climate on Antarctica from an ocean sediment core recovered off the Wilkes Land coast of East Antarctica. The information from biotic climate proxies (pollen and spores) and independent organic geochemical climate proxies (indices based on branched tetraether lipids) yields quantitative, seasonal temperature reconstructions for the early Eocene greenhouse world on Antarctica. We show that the climate in lowland settings along the Wilkes Land coast (at a palaeolatitude of about 70° south) supported the growth of highly diverse, near-tropical forests characterized by mesothermal to megathermal floral elements including palms and Bombacoideae. Notably, winters were extremely mild (warmer than 10 °C) and essentially frost-free despite polar darkness, which provides a critical new constraint for the validation of climate models and for understanding the response of high-latitude terrestrial ecosystems to increased carbon dioxide forcing.


Subject(s)
Greenhouse Effect/history , Temperature , Tropical Climate , Animals , Antarctic Regions , Atmosphere/chemistry , Carbon Dioxide/analysis , Cell Respiration , Ecosystem , Geologic Sediments/chemistry , History, Ancient , Human Activities , Lipids/analysis , Models, Theoretical , Photosynthesis , Pollen , Reproducibility of Results , Seasons , Spores/isolation & purification , Trees/growth & development
15.
Proc Natl Acad Sci U S A ; 105(43): 16460-5, 2008 Oct 28.
Article in English | MEDLINE | ID: mdl-18955702

ABSTRACT

Recent excavations and high-precision radiocarbon dating from the largest Iron Age (IA, ca. 1200-500 BCE) copper production center in the southern Levant demonstrate major smelting activities in the region of biblical Edom (southern Jordan) during the 10th and 9th centuries BCE. Stratified radiocarbon samples and artifacts were recorded with precise digital surveying tools linked to a geographic information system developed to control on-site spatial analyses of archaeological finds and model data with innovative visualization tools. The new radiocarbon dates push back by 2 centuries the accepted IA chronology of Edom. Data from Khirbat en-Nahas, and the nearby site of Rujm Hamra Ifdan, demonstrate the centrality of industrial-scale metal production during those centuries traditionally linked closely to political events in Edom's 10th century BCE neighbor ancient Israel. Consequently, the rise of IA Edom is linked to the power vacuum created by the collapse of Late Bronze Age (LB, ca. 1300 BCE) civilizations and the disintegration of the LB Cypriot copper monopoly that dominated the eastern Mediterranean. The methodologies applied to the historical IA archaeology of the Levant have implications for other parts of the world where sacred and historical texts interface with the material record.


Subject(s)
Archaeology , Carbon Radioisotopes , Civilization , History, Ancient , Humans , Jordan
16.
Science ; 307(5707): 240-4, 2005 Jan 14.
Article in English | MEDLINE | ID: mdl-15653500

ABSTRACT

We use a method based on a statistical geomagnetic field model to recognize and correct for inclination error in sedimentary rocks from early Mesozoic rift basins in North America, Greenland, and Europe. The congruence of the corrected sedimentary results and independent data from igneous rocks on a regional scale indicates that a geocentric axial dipole field operated in the Late Triassic. The corrected paleolatitudes indicate a faster poleward drift of approximately 0.6 degrees per million years for this part of Pangea and suggest that the equatorial humid belt in the Late Triassic was about as wide as it is today.

17.
Science ; 300(5628): 2044-5, 2003 Jun 27.
Article in English | MEDLINE | ID: mdl-12829772
18.
J Hum Evol ; 42(1-2): 117-40, 2002.
Article in English | MEDLINE | ID: mdl-11795971

ABSTRACT

(40)Ar/(39)Ar single-crystal laser-fusion dating, K-Ar dating, and paleomagnetic reversal stratigraphy have been used to determine the chronostratigraphy of the Kabarnet Trachyte, Lukeino Formation, Kaparaina Basalt Formation, and Chemeron Formation at the sites of Kapcheberek (BPRP#77) and Tabarin (BPRP#77) in the Tugen Hills, Kenya. The succession ranges in age from 6.56-3.8 Ma. The upper Lukeino Formation at Kapcherberek, including the fauna from the site BPRP#76, was deposited during chron C3r and can be constrained to the interval 5.88-5.72 Ma. The Chemeron Formation at Tabarin includes at the base an ignimbrite and associated basal air-fall tuff with a combined age of 5.31+/-0.03 Ma. Sedimentary and volcaniclastic rocks of the Chemeron Formation which unconformably overlie the ignimbrite record chrons C3n.2n through C2Ar. The combined(40)Ar/(39)Ar and paleomagnetic data constrain the age of this sequence to 4.63-3.837 Ma. The age of the Tabarin mandible fragment (KNM-TH 13150) and associated fauna at site BPRP#77 in the Chemeron Formation is 4.48-4.41 Ma, marginally older than similar early hominids from Aramis, Ethiopia. Basin subsidence appears to be defining an overall accumulation rate of about 17 cm/ka over the 2.7 Ma represented at Tabarin and Kapcheberek, despite episodes of rapid accumulation and hiatuses.


Subject(s)
Fossils , Geologic Sediments/analysis , Hominidae/anatomy & histology , Animals , Argon , Humans , Humerus , Kenya , Mandible , Radioisotopes , Radiometry/methods , Time Factors , Tooth
SELECTION OF CITATIONS
SEARCH DETAIL
...