Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Zootaxa ; 5093(3): 296-314, 2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35391485

ABSTRACT

Deep-sea benthic communities from the Weddell Sea, Antarctica, were sampled in JanuaryApril 2005 in an area located between 61S70S and 0W49W. We found a total of eight ascidian species that belong to five different families, of which one corresponded to a new species. These were: Protoholozoa pedunculata Kott, 1969; Corynascidia suhmi Herdman, 1882; Styela andeepensis Maggioni Tatin sp. nov.; Culeolus suhmi Herman, 1881; Culeolus anonymus Monniot F. Monniot C., 1976; Culeolus likae Sanamyan K. Sanamyan N., 2002; Oligotrema lyra (Monniot C. Monniot F., 1973) and Asajirus indicus (Oka, 1913). We report: the extension of the known distribution ranges of P. pedunculata, Corynascidia suhmi, Culeolus suhmi, C. likae and A. indicus, being the first time they are collected from the Weddell Sea; and the shallowest record of C. likae. Six species were added to the list of ascidians of the Weddell Sea, being all deep-sea representatives. While the total number of ascidian species augmented from 43 to 49, the number of deep-sea representatives increased from 23 to 29. Our findings, thus, reinforce the need of performing more deep-sea prospections in the area.


Subject(s)
Chordata , Thoracica , Urochordata , Animals , Antarctic Regions , Gastrointestinal Contents , Humans
2.
Ecol Evol ; 10(15): 8127-8143, 2020 Aug.
Article in English | MEDLINE | ID: mdl-32788966

ABSTRACT

The Southern Ocean is one of the most isolated marine ecosystems, characterized by high levels of endemism, diversity, and biomass. Ascidians are among the dominant groups in Antarctic benthic assemblages; thus, recording the evolutionary patterns of this group is crucial to improve our current understanding of the assembly of this polar ocean. We studied the genetic variation within Cnemidocarpa verrucosa sensu lato, one of the most widely distributed abundant and studied ascidian species in Antarctica. Using a mitochondrial and a nuclear gene (COI and 18S), the phylogeography of fifteen populations distributed along the West Antarctic Peninsula and Burdwood Bank/MPA Namuncurá (South American shelf) was characterized, where the distribution of the genetic distance suggested the existence of, at least, two species within nominal C. verrucosa. When reevaluating morphological traits to distinguish between genetically defined species, the presence of a basal disk in one of the genotypes could be a diagnostic morphological trait to differentiate the species. These results are surprising due to the large research that has been carried out with the conspicuous C. verrucosa with no differentiation between species. Furthermore, it provides important tools to distinguish species in the field and laboratory. But also, these results give new insights into patterns of differentiation between closely related species that are distributed in sympatry, where the permeability of species boundaries still needs to be well understood.

3.
Zootaxa ; 4526(1): 1-28, 2018 Nov 28.
Article in English | MEDLINE | ID: mdl-30486087

ABSTRACT

The understudied deep-sea benthic communities from the Southwestern Atlantic continental slope (200 m-3000 m depth) were sampled on August 2012 in an area located around 38°S that included the Mar del Plata submarine canyon. In these samplings we found a total of 16 ascidian species from six different families, of which two corresponded to new species. These were: Aplidium meridianum (Sluiter, 1906); Aplidium variabile (Herdman, 1886); Aplidium marplatensis Maggioni Tatián (sp. nov. present work); Aplidium solitarium Maggioni Tatián (sp. nov. present work); Synoicum georgianum Sluiter, 1932; Synoicum molle (Herdman, 1886); Synoicum sp.; Polysyncraton trivolutum (Millar, 1960); Sycozoa umbellata (Michaelsen, 1898); Ascidia meridionalis Herdman, 1880; Cnemidocarpa drygalskii (Hartmeyer, 1911); Styela squamosa Herdman, 1881; Pyura pilosa Monniot C. Monniot F., 1974; Molgula pyriformis Herdman, 1881; Molgula setigera Ärnbäck-Christie-Linde, 1938 and Asajirus indicus (Oka, 1913). Based on morphological evidence, we propose the new synonymy: Molgula setigera Ärnbäck-Christie-Linde, 1938 = Molgula marioni Millar, 1960 = Molgula robini Monniot C. Monniot F., 1983. We also propose to maintain Molgula pyriformis and Molgula malvinensis as separate species. We report: the extension of the distribution range of Aplidium meridianum, Synoicum georgianum, Polysyncraton trivolutum, Sycozoa umbellata, Cnemidocarpa drygalskii, Pyura pilosa and Molgula setigera, being the first time they are collected off La Plata River; the deepest registers for Synoicum georgianum, Poylsyncraton trivolutum, Sycozoa umbellata, Ascidia meridionalis, Pyura pilosa, Molgula pyriformis and Molgula setigera; and the shallowest register for Synoicum molle.


Subject(s)
Chordata , Urochordata , Animals
SELECTION OF CITATIONS
SEARCH DETAIL