Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 218
Filter
1.
Methods Cell Biol ; 185: 1-17, 2024.
Article in English | MEDLINE | ID: mdl-38556443

ABSTRACT

The soil nematode worm Caenorhabditis elegans is a simple and well-established model for the study of many biological processes. Heat shock and thermotolerance assays have been developed for this nematode, and have been used to decipher the molecular relationships between thermal stress and aging, among others. Nevertheless, a systematic and methodological comparison of the different approaches and tools utilized is lacking in the literature. Here, we aim to provide a comprehensive summary of the most commonly used strategies for carrying out heat shock and thermotolerance assays that have been reported, highlighting specific readouts and scientific questions that can be addressed. Furthermore, we offer examples of thermotolerance assays performed with wild type nematodes, that can serve as a gauge of the animal survival under diverse conditions of stress.


Subject(s)
Caenorhabditis elegans Proteins , Thermotolerance , Animals , Caenorhabditis elegans/genetics , Heat-Shock Response
2.
Methods Cell Biol ; 181: 1-15, 2024.
Article in English | MEDLINE | ID: mdl-38302233

ABSTRACT

Proteome integrity is a prerequisite for cellular functionality and organismal viability. Its compromise is considered an inherent part of the aging process and has been associated with the onset of age-related, neurodegenerative pathologies. Although the molecular underpinnings of protein homeostasis (proteostasis) have been extensively studied, several aspects of its regulation remain elusive. The nematode Caenorhabditis elegans has emerged as a versatile, heterologous model organism to study the dynamics of aggregation-prone human proteins in vivo. Here, we describe an experimental pipeline for the analysis of polyglutamine (polyQ) tract aggregation, as a measure of the state of proteostasis, during aging.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Humans , Caenorhabditis elegans/physiology , Peptides/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism
3.
Article in English | MEDLINE | ID: mdl-38289789

ABSTRACT

Unhealthy aging poses a global challenge with profound healthcare and socioeconomic implications. Slowing down the aging process offers a promising approach to reduce the burden of a number of age-related diseases, such as dementia, and promoting healthy longevity in the old population. In response to the challenge of the aging population and with a view to the future, Norway and the United Kingdom are fostering collaborations, supported by a "Money Follows Cooperation agreement" between the 2 nations. The inaugural Norway-UK joint meeting on aging and dementia gathered leading experts on aging and dementia from the 2 nations to share their latest discoveries in related fields. Since aging is an international challenge, and to foster collaborations, we also invited leading scholars from 11 additional countries to join this event. This report provides a summary of the conference, highlighting recent progress on molecular aging mechanisms, genetic risk factors, DNA damage and repair, mitophagy, autophagy, as well as progress on a series of clinical trials (eg, using NAD+ precursors). The meeting facilitated dialogue among policymakers, administrative leaders, researchers, and clinical experts, aiming to promote international research collaborations and to translate findings into clinical applications and interventions to advance healthy aging.


Subject(s)
Aging , Dementia , Humans , Aged , Longevity , Dementia/prevention & control , Dementia/epidemiology , United Kingdom , Norway
4.
STAR Protoc ; 5(1): 102801, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38159271

ABSTRACT

C. elegans is a bacteria-eating soil-dwelling nematode. Typical cultivation of laboratory-reared populations occurs on bacteria-covered solid media, where they move along with sinusoidal undulations. Nematodes decelerate when they encounter food. Dopaminergic and serotonergic neurotransmission regulate this behavior. Here, we describe the procedure for determining food-dependent locomotion rate of fed and fasting nematodes. We detail steps for assay plate preparation, C. elegans synchronization, and assessment of locomotion. The behaviors we describe provide information regarding the animal's physiological neuronal and muscular function. For complete details on the use and execution of this protocol, please refer to Petratou et al. (2023)1 and Sawin et al. (2000).2.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/physiology , Locomotion/physiology , Caenorhabditis elegans Proteins/physiology , Neurons , Dopamine
5.
Int J Mol Sci ; 24(19)2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37834309

ABSTRACT

N6-methyladenine (6mA) in the DNA is a conserved epigenetic mark with various cellular, physiological and developmental functions. Although the presence of 6mA was discovered a few years ago in the nuclear genome of distantly related animal taxa and just recently in mammalian mitochondrial DNA (mtDNA), accumulating evidence at present seriously questions the presence of N6-adenine methylation in these genetic systems, attributing it to methodological errors. In this paper, we present a reliable, PCR-based method to determine accurately the relative 6mA levels in the mtDNA of Caenorhabditis elegans, Drosophila melanogaster and dogs, and show that these levels gradually increase with age. Furthermore, daf-2(-)-mutant worms, which are defective for insulin/IGF-1 (insulin-like growth factor) signaling and live twice as long as the wild type, display a half rate at which 6mA progressively accumulates in the mtDNA as compared to normal values. Together, these results suggest a fundamental role for mtDNA N6-adenine methylation in aging and reveal an efficient diagnostic technique to determine age using DNA.


Subject(s)
DNA Methylation , DNA, Mitochondrial , Animals , Dogs , DNA, Mitochondrial/genetics , DNA, Mitochondrial/metabolism , Drosophila melanogaster/genetics , Drosophila melanogaster/metabolism , Adenine/metabolism , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Aging/genetics , Mammals/metabolism
6.
Cells ; 12(16)2023 08 08.
Article in English | MEDLINE | ID: mdl-37626835

ABSTRACT

The mTORC1 nutrient-sensing pathway integrates metabolic and endocrine signals into the brain to evoke physiological responses to food deprivation, such as autophagy. Nevertheless, the impact of neuronal mTORC1 activity on neuronal circuits and organismal metabolism remains obscure. Here, we show that mTORC1 inhibition acutely perturbs serotonergic neurotransmission via proteostatic alterations evoked by the autophagy inducer atg1. Neuronal ATG1 alters the intracellular localization of the serotonin transporter, which increases the extracellular serotonin and stimulates the 5HTR7 postsynaptic receptor. 5HTR7 enhances food-searching behaviour and ecdysone-induced catabolism in Drosophila. Along similar lines, the pharmacological inhibition of mTORC1 in zebrafish also stimulates food-searching behaviour via serotonergic activity. These effects occur in parallel with neuronal autophagy induction, irrespective of the autophagic activity and the protein synthesis reduction. In addition, ectopic neuronal atg1 expression enhances catabolism via insulin pathway downregulation, impedes peptidergic secretion, and activates non-cell autonomous cAMP/PKA. The above exert diverse systemic effects on organismal metabolism, development, melanisation, and longevity. We conclude that neuronal atg1 aligns neuronal autophagy induction with distinct physiological modulations, to orchestrate a coordinated physiological response against reduced mTORC1 activity.


Subject(s)
Synaptic Transmission , Zebrafish , Animals , Adaptation, Physiological , Autophagy , Brain , Drosophila
7.
EMBO J ; 42(16): e112446, 2023 08 15.
Article in English | MEDLINE | ID: mdl-37427543

ABSTRACT

Mitochondria are central regulators of healthspan and lifespan, yet the intricate choreography of multiple, tightly controlled steps regulating mitochondrial biogenesis remains poorly understood. Here, we uncover a pivotal role for specific elements of the 5'-3' mRNA degradation pathway in the regulation of mitochondrial abundance and function. We find that the mRNA degradation and the poly-A tail deadenylase CCR4-NOT complexes form distinct foci in somatic Caenorhabditis elegans cells that physically and functionally associate with mitochondria. Components of these two multi-subunit complexes bind transcripts of nuclear-encoded mitochondria-targeted proteins to regulate mitochondrial biogenesis during ageing in an opposite manner. In addition, we show that balanced degradation and storage of mitochondria-targeted protein mRNAs are critical for mitochondrial homeostasis, stress resistance and longevity. Our findings reveal a multifaceted role of mRNA metabolism in mitochondrial biogenesis and show that fine-tuning of mRNA turnover and local translation control mitochondrial abundance and promote longevity in response to stress and during ageing.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Aging/metabolism , Mitochondria/metabolism , Longevity/genetics
9.
iScience ; 26(7): 107117, 2023 Jul 21.
Article in English | MEDLINE | ID: mdl-37416472

ABSTRACT

The nervous system participates in the initiation and modulation of systemic stress. Ionstasis is of utmost importance for neuronal function. Imbalance in neuronal sodium homeostasis is associated with pathologies of the nervous system. However, the effects of stress on neuronal Na+ homeostasis, excitability, and survival remain unclear. We report that the DEG/ENaC family member DEL-4 assembles into a proton-inactivated sodium channel. DEL-4 operates at the neuronal membrane and synapse to modulate Caenorhabditis elegans locomotion. Heat stress and starvation alter DEL-4 expression, which in turn alters the expression and activity of key stress-response transcription factors and triggers appropriate motor adaptations. Similar to heat stress and starvation, DEL-4 deficiency causes hyperpolarization of dopaminergic neurons and affects neurotransmission. Using humanized models of neurodegenerative diseases in C. elegans, we showed that DEL-4 promotes neuronal survival. Our findings provide insights into the molecular mechanisms by which sodium channels promote neuronal function and adaptation under stress.

10.
Mech Ageing Dev ; 213: 111827, 2023 Jul.
Article in English | MEDLINE | ID: mdl-37268279

ABSTRACT

Since its introduction by Sydney Brenner, Caenorhabditis elegans has become a widely studied organism. Given its highly significant properties, including transparency, short lifespan, self-fertilization, high reproductive yield and ease in manipulation and genetic modifications, the nematode has contributed to the elucidation of several fundamental aspects of biology, such as development and ageing. Moreover, it has been extensively used as a platform for the modelling of ageing-associated human disorders, especially those related to neurodegeneration. The use of C. elegans for such purposes requires, and at the same time promotes the investigation of its normal ageing process. In this review we aim to summarize the major organismal alterations during normal worm ageing, in terms of morphology and functionality.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Humans , Caenorhabditis elegans/genetics , Reproduction , Longevity , Aging/physiology , Caenorhabditis elegans Proteins/genetics
11.
J Cell Sci ; 136(11)2023 06 01.
Article in English | MEDLINE | ID: mdl-37278219

ABSTRACT

Neurons are highly polarized, post-mitotic cells that are characterized by unique morphological diversity and complexity. As highly differentiated cells that need to survive throughout organismal lifespan, neurons face exceptional energy challenges in time and space. Therefore, neurons are heavily dependent on a healthy mitochondrial network for their proper function and maintenance under both physiological and stress conditions. Multiple quality control systems have evolved to fine-tune mitochondrial number and quality, thus preserving neuronal energy homeostasis. Here, we review the contribution of mitophagy, a selective form of autophagy that targets dysfunctional or superfluous mitochondria for degradation, in maintaining nervous system homeostasis. In addition, we discuss recent evidence implicating defective or dysregulated mitophagy in the pathogenesis of neurodegenerative diseases.


Subject(s)
Mitophagy , Neurodegenerative Diseases , Humans , Mitophagy/physiology , Autophagy/physiology , Neurons/metabolism , Neurodegenerative Diseases/metabolism , Homeostasis
12.
Cell Metab ; 35(5): 725-727, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37137284

ABSTRACT

Systemic control of homeostatic processes is of fundamental importance for survival and adaptation in metazoans. In this issue of Cell Metabolism, Chen and colleagues identify and methodically dissect a signaling cascade that is mobilized by the agouti-related peptide (AgRP)-expressing neurons in the hypothalamus, to ultimately modulate autophagy and metabolism in the liver upon starvation.


Subject(s)
Autophagy , Hypothalamus , Liver , Liver/metabolism , Hypothalamus/physiology , Humans , Animals , Nutrients/metabolism , Signal Transduction
13.
STAR Protoc ; 4(2): 102250, 2023 Apr 26.
Article in English | MEDLINE | ID: mdl-37104093

ABSTRACT

Here, we present an olfactory-dependent chemotaxis assay for evaluating changes in memory-like behavior in both wild-type and Alzheimer's-disease-like C. elegans models. We describe steps for synchronizing and preparing C. elegans populations and for performing isoamyl alcohol conditioning during starvation and chemotaxis assaying. We then detail counting and quantification procedures. This protocol is applicable to mechanistic exploration and drug screening in neurodegenerative diseases and brain aging.

14.
Nat Aging ; 3(1): 34-46, 2023 01.
Article in English | MEDLINE | ID: mdl-37118512

ABSTRACT

Marked alterations in nuclear ultrastructure are a universal hallmark of aging, progeroid syndromes and other age-related pathologies. Here we show that autophagy of nuclear proteins is an important determinant of fertility and aging. Impairment of nucleophagy diminishes stress resistance, germline immortality and longevity. We found that the nematode Caenorhabditis elegans nuclear envelope anchor protein, nuclear anchorage protein 1 (ANC-1) and its mammalian ortholog nesprin-2 are cleared out by autophagy and restrict nucleolar size, a biomarker of aging. We further uncovered a germline immortality assurance mechanism, which involves nucleolar degradation at the most proximal oocyte by ANC-1 and key autophagic components. Perturbation of this clearance pathway causes tumor-like structures in C. elegans, and genetic ablation of nesprin-2 causes ovarian carcinomas in mice. Thus, autophagic recycling of nuclear components is a conserved soma longevity and germline immortality mechanism that promotes youthfulness and delays aging under conditions of stress.


Subject(s)
Aging , Caenorhabditis elegans , Animals , Mice , Caenorhabditis elegans/genetics , Aging/genetics , Autophagy/genetics , Germ Cells , Mammals
15.
Int Rev Cell Mol Biol ; 374: 129-157, 2023.
Article in English | MEDLINE | ID: mdl-36858654

ABSTRACT

Autophagy is a physiological response, activated by a myriad of endogenous and exogenous cues, including DNA damage, perturbation of proteostasis, depletion of nutrients or oxygen and pathogen infection. Upon sensing those stimuli, cells employ multiple non-selective and selective autophagy pathways to promote fitness and survival. Importantly, there are a variety of selective types of autophagy. In this review we will focus on autophagy of bacteria (xenophagy) and autophagy of mitochondria (mitophagy). We provide a brief introduction to bulk autophagy, as well as xenophagy and mitophagy, highlighting their common molecular factors. We also describe the role of xenophagy and mitophagy in the detection and elimination of pathogens by the immune system and the adaptive mechanisms that some pathogens have developed through evolution to escape the host autophagic response. Finally, we summarize the recent articles (from the last five years) linking bulk autophagy with xenophagy and/or mitophagy in the context on developmental biology, cancer and metabolism.


Subject(s)
Macroautophagy , Mitophagy , Autophagy , DNA Damage , Exercise
16.
Cell Death Dis ; 14(2): 110, 2023 02 11.
Article in English | MEDLINE | ID: mdl-36774344

ABSTRACT

Mitochondria preserve metabolic homeostasis and integrate stress signals, to trigger cytoprotective, or cell death pathways. Mitochondrial homeostasis and function decline with age. The mechanisms underlying the deterioration of mitochondrial homeostasis during ageing, or in age-associated pathologies, remain unclear. Here, we show that CISD-1, a mitochondrial iron-sulfur cluster binding protein, implicated in the pathogenesis of Wolfram neurodegenerative syndrome type 2, modulates longevity in the nematode Caenorhabditis elegans by engaging autophagy and the mitochondrial intrinsic apoptosis pathway. The anti-apoptotic protein CED-9 is the downstream effector that mediates CISD-1-dependent effects on proteostasis, neuronal integrity and lifespan. Moreover, intracellular iron abundance is critical for CISD-1 function, since mild iron supplementation is sufficient to decelerate ageing and partly ameliorate the disturbed mitochondrial bioenergetics and proteostasis of CISD-1 deficient animals. Our findings reveal that CISD-1 serves as a mechanistic link between autophagy and the apoptotic pathway in mitochondria to differentially modulate organismal proteostasis and ageing, and suggest novel approaches which could facilitate the treatment of Wolfram Syndrome or related diseases.


Subject(s)
Aging , Autophagy , Caenorhabditis elegans Proteins , Caenorhabditis elegans , Proteostasis , Animals , Aging/metabolism , Apoptosis , Autophagy/genetics , Caenorhabditis elegans/genetics , Caenorhabditis elegans/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Longevity , Mitochondria/metabolism
17.
Int J Mol Sci ; 24(4)2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36835643

ABSTRACT

SNARE proteins reside between opposing membranes and facilitate vesicle fusion, a physiological process ubiquitously required for secretion, endocytosis and autophagy. With age, neurosecretory SNARE activity drops and is pertinent to age-associated neurological disorders. Despite the importance of SNARE complex assembly and disassembly in membrane fusion, their diverse localization hinders the complete understanding of their function. Here, we revealed a subset of SNARE proteins, the syntaxin SYX-17, the synaptobrevins VAMP-7, SNB-6 and the tethering factor USO-1, to be either localized or in close proximity to mitochondria, in vivo. We term them mitoSNAREs and show that animals deficient in mitoSNAREs exhibit increased mitochondria mass and accumulation of autophagosomes. The SNARE disassembly factor NSF-1 seems to be required for the effects of mitoSNARE depletion. Moreover, we find mitoSNAREs to be indispensable for normal aging in both neuronal and non-neuronal tissues. Overall, we uncover a previously unrecognized subset of SNAREs that localize to mitochondria and propose a role of mitoSNARE assembly and disassembly factors in basal autophagy regulation and aging.


Subject(s)
Aging , Autophagy , Caenorhabditis elegans , SNARE Proteins , Animals , Caenorhabditis elegans/physiology , Endocytosis , Membrane Fusion , SNARE Proteins/physiology
18.
Bioessays ; 45(3): e2200160, 2023 03.
Article in English | MEDLINE | ID: mdl-36709422

ABSTRACT

Mitochondria hold diverse and pivotal roles in fundamental processes that govern cell survival, differentiation, and death, in addition to organismal growth, maintenance, and aging. The mitochondrial protein import system is a major contributor to mitochondrial biogenesis and lies at the crossroads between mitochondrial and cellular homeostasis. Recent findings highlight the mitochondrial protein import system as a signaling hub, receiving inputs from other cellular compartments and adjusting its function accordingly. Impairment of protein import, in a physiological, or disease context, elicits adaptive responses inside and outside mitochondria. In this review, we discuss recent developments, relevant to the mechanisms of mitochondrial protein import regulation, with a particular focus on quality control, proteostatic and metabolic cellular responses, triggered upon impairment of mitochondrial protein import.


Subject(s)
Mitochondria , Mitochondrial Proteins , Cytosol/metabolism , Mitochondrial Proteins/metabolism , Mitochondria/metabolism , Protein Transport
19.
Antioxidants (Basel) ; 12(1)2023 Jan 05.
Article in English | MEDLINE | ID: mdl-36670993

ABSTRACT

Reactive oxygen species (ROS) have been described to induce a broad range of redox-dependent signaling reactions in physiological conditions. Nevertheless, an excessive accumulation of ROS leads to oxidative stress, which was traditionally considered as detrimental for cells and organisms, due to the oxidative damage they cause to biomolecules. During ageing, elevated ROS levels result in the accumulation of damaged proteins, which may exhibit altered enzymatic function or physical properties (e.g., aggregation propensity). Emerging evidence also highlights the relationship between oxidative stress and age-related pathologies, such as protein misfolding-based neurodegenerative diseases (e.g., Parkinson's (PD), Alzheimer's (AD) and Huntington's (HD) diseases). In this review we aim to introduce the role of oxidative stress in physiology and pathology and then focus on the state-of-the-art techniques available to detect and quantify ROS and oxidized proteins in live cells and in vivo, providing a guide to those aiming to characterize the role of oxidative stress in ageing and neurodegenerative diseases. Lastly, we discuss recently published data on the role of oxidative stress in neurological disorders.

20.
Aging Cell ; 22(4): e13788, 2023 04.
Article in English | MEDLINE | ID: mdl-36718841

ABSTRACT

Aging is the major risk factor for several life-threatening pathologies and impairs the function of multiple cellular compartments and organelles. Age-dependent deterioration of nuclear morphology is a common feature in evolutionarily divergent organisms. Lipid droplets have been shown to localize in most nuclear compartments, where they impinge on genome architecture and integrity. However, the significance of progressive nuclear lipid accumulation and its impact on organismal homeostasis remain obscure. Here, we implement non-linear imaging modalities to monitor and quantify age-dependent nuclear lipid deposition in Caenorhabditis elegans. We find that lipid droplets increasingly accumulate in the nuclear envelope, during aging. Longevity-promoting interventions, such as low insulin signaling and caloric restriction, abolish the rate of nuclear lipid accrual and decrease the size of lipid droplets. Suppression of lipotoxic lipid accumulation in hypodermal and intestinal nuclei is dependent on the transcription factor HLH-30/TFEB and the triglyceride lipase ATGL-1. HLH-30 regulates the expression of ATGL-1 to reduce nuclear lipid droplet abundance in response to lifespan-extending conditions. Notably, ATGL-1 localizes to the nuclear envelope and moderates lipid content in long-lived mutant nematodes during aging. Our findings indicate that the reduced ATGL-1 activity leads to excessive nuclear lipid accumulation, perturbing nuclear homeostasis and undermining organismal physiology, during aging.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Animals , Caenorhabditis elegans/metabolism , Lipid Droplets/metabolism , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Aging/genetics , Longevity/genetics , Lipids , Lipase/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...