Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Water Res ; 137: 220-232, 2018 06 15.
Article in English | MEDLINE | ID: mdl-29550725

ABSTRACT

This study seeks to understand the general distribution of virome abundance and diversity in tropical freshwater ecosystems in Singapore and the geospatial distribution of the virome under different landuse patterns. Correlations between diversity, environmental parameters and land use patterns were analyzed and significant correlations were highlighted. Overall, the majority (65.5%) of the annotated virome belonged to bacteriophages. The percentage of Caudovirales was higher in reservoirs whereas the percentages of Dicistroviridae, Microviridae and Circoviridae were higher in tributaries. Reservoirs showed a higher Shannon-index virome diversity compared to upstream tributaries. Land use (urbanized, agriculture and parkland areas) influenced the characteristics of the virome distribution pattern. Dicistroviridae and Microviridae were enriched in urbanized tributaries while Mimiviridae, Phycodnaviridae, Siphoviridae and Podoviridae were enriched in parkland reservoirs. Several sequences closely related to the emerging zoonotic virus, cyclovirus, and the human-related virus (human picobirnavirus), were also detected. In addition, the relative abundance of PMMoV (pepper mild mottle virus) sequences was significantly correlated with RT-qPCR measurements (0.588 < r < 0.879, p < 0.05). This study shows that spatial factors (e.g., reservoirs/tributaries, land use) are the main drivers of the viral community structure in tropical freshwater ecosystems.


Subject(s)
Fresh Water/virology , Viruses/isolation & purification , Environmental Monitoring , Singapore , Spatial Analysis , Viruses/genetics
2.
ISME J ; 9(8): 1812-20, 2015 Aug.
Article in English | MEDLINE | ID: mdl-25615438

ABSTRACT

Association of Vibrio cholerae with chitinous surfaces of zooplankton is important for its persistence in marine environments, as it provides accessibility to nutrients and resistance to stresses. Predation by heterotrophic protists has a major impact on the survival of V. cholerae. V. cholerae forms biofilms as its main defensive strategy, and quorum sensing (QS) additionally regulates the production of antiprotozoal factors. The role of chitin and QS regulation in V. cholerae grazing resistance was investigated by exposing V. cholerae wild-type (WT) and QS mutant biofilms grown on chitin flakes to the bacteriotrophic, surface-feeding flagellate Rhynchomonas nasuta. V. cholerae formed more biofilm biomass on chitin flakes compared with nonchitinous surfaces. The growth of R. nasuta was inhibited by WT biofilms grown on chitin flakes, whereas the inhibition was attenuated in QS mutant biofilms. The chitin-dependent toxicity was also observed when the V. cholerae biofilms were developed under continuous flow or grown on a natural chitin source, the exoskeleton of Artemia. In addition, the antiprotozoal activity and ammonium concentration of V. cholerae biofilm supernatants were quantified. The ammonium levels (3.5 mM) detected in the supernatants of V. cholerae WT biofilms grown on chitin flakes were estimated to reduce the number of R. nasuta by >80% in add-back experiments, and the supernatant of QS mutant biofilms was less toxic owing to a decrease in ammonium production. Transcriptomic analysis revealed that the majority of genes involved in chitin metabolism and chemotaxis were significantly downregulated in QS mutant biofilms when grown on chitin compared with the WT biofilms.


Subject(s)
Chitin/physiology , Quorum Sensing/physiology , Vibrio cholerae/physiology , Ammonia/metabolism , Ammonia/pharmacology , Animals , Antiprotozoal Agents/pharmacology , Biofilms/growth & development , Chitin/metabolism , Kinetoplastida/drug effects , Kinetoplastida/physiology , Quorum Sensing/genetics , Vibrio cholerae/growth & development , Zooplankton/microbiology
3.
Genome Announc ; 1(6)2013 Dec 19.
Article in English | MEDLINE | ID: mdl-24356844

ABSTRACT

Klebsiella pneumoniae is ubiquitous in the environment and is a member of a three-species biofilm model. We compared the genome sequence of an environmental isolate, K. pneumoniae strain KP-1, to those of two clinical strains (NTUH-K2044 and MGH 78578). KP-1 possesses strain-specific prophage sequences that distinguish it from the clinical strains.

SELECTION OF CITATIONS
SEARCH DETAIL
...