Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Gene ; 555(2): 377-81, 2015 Jan 25.
Article in English | MEDLINE | ID: mdl-25447917

ABSTRACT

The most common malignancy in women is breast cancer. Drug resistance in the treatment of cancer still remains a major clinical concern. Resistance to tamoxifen is seen in half of the recurrences in breast cancer. The anti-estrogen tamoxifen gains agonistic property by transactivating ERα. PAK1-mediated phosphorylation of serine 305 (S305) of ERα leads to resistance to tamoxifen. In our study, PAK1-induced suggestive tamoxifen resistance was designed. According to our hypothesis, phosphorylation of ERα-S305 by PAK1 may be reversed by PAK1 transcriptional inhibition by miR-221-3p due to miR-221-3p targeting the 3' UTR of PAK1. For this purpose, we used Real-time PCR (qRT-PCR) to measure the expression level of miR-221-3p in ER-positive breast cancer cell lines (ZR-75-1, MCF7) and breast epithelial cell line, hTERT-HME1, as control in the laboratory in our department. The increase in the expression of PAK1 depending on miR-221-3p may be related to ZR-75-1 cell line which has invasive characteristic but other two ER+ cancer cell lines, MCF7 and HCC1500, have milder cancer severity. miR-221-3p may have a role on regulation of PAK1 expression because miR-221-3p expression level decreases while PAK1 expression level increases in SKBR3 cell line. miR-221-3p and PAK1 expressions in MDA-MB-231 cell line are higher than that of hTERT-HME1 cell line. This may mean that miR-221-3p has no regulatory effect on of PAK1 expression in this cell line. According to these results, miR-221-3p may give crucial information about molecular mechanism of the disease upon PAK1 activity or different mechanisms with respect to histopathology and severity of breast cancer.


Subject(s)
Breast Neoplasms/metabolism , Drug Resistance, Neoplasm , Gene Expression Regulation, Neoplastic , MicroRNAs/metabolism , p21-Activated Kinases/metabolism , 3' Untranslated Regions , Breast Neoplasms/genetics , Cell Line, Tumor , Female , Gene Expression Profiling , Humans , MCF-7 Cells , MicroRNAs/genetics , Phosphorylation , Real-Time Polymerase Chain Reaction , Tamoxifen/pharmacology , p21-Activated Kinases/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...